Способы нахождения обратной матрицы, нахождение обратной матрицы.

Нахождение ранга матрицы методом окаймляющих миноров.

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров.

Разберемся с понятием окаймляющего минора.

Говорят, что минор Мок (k+1)-ого порядка матрицы А окаймляет минор M порядка k матрицы А, если матрица, соответствующая минору Мок , «содержит» матрицу, соответствующую минору M.

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Для чего это делается? Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Рассмотрим квадратную матрицу

.

Обозначим Δ =det A.

Квадратная матрица В есть обратная матрица для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Доказательство:

1. Необходимость. Пусть для матрицы A существует обратная матрица A-1. Покажем, что |A| ≠ 0.

Прежде всего заметим, что можно доказать следующее свойство определителей .

Предположим, что |A| = 0. Тогда . Но с другой стороны . Полученное противоречие и доказывает, что |A| ≠ 0.

2. Достаточность. Для простоты доказательство проведём для случая матрицы третьего порядка. Пусть и |A| ≠ 0.

Покажем, что в этом случае обратной матрицей будет матрица

, где Aij алгебраическое дополнение элемента aij.

Найдём AB=C.

Заметим, что все диагональные элементы матрицы C будут равны 1. Действительно, например,

Аналогично по теореме о разложении определителя по элементам строки можно доказать, что c22 = c33 = 1.

Кроме того, все недиагональные элементы матрицы C равны нулю. Например,

Следовательно, AB=E. Аналогично можно показать, что BA=E. Поэтому B = A-1.

Таким образом, теорема содержит способ нахождения обратной матрицы.

Если условия теоремы выполнены, то матрица обратная к матрице находится следующим образом

,

где Aij - алгебраические дополнения элементов aij данной матрицы A.

 

Итак, чтобы найти обратную матрицу нужно:

1. Найти определитель матрицы A.

2. Найти алгебраические дополнения Aij всех элементов матрицы A и составить матрицу , элементами которой являются числа Aij.

3. Найти матрицу, транспонированную полученной матрице , и умножить её на – это и будет .

Аналогично для матриц второго порядка, обратной будет следующая матрица .

 

Обратная матрица матрице А, обозначается через А-1, так что В = А-1 и вычисляется по формуле

, (1)

где А i j - алгебраические дополнения элементов a i j матрицы A..

Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 1. Для матрицы найти A-1.

Решение. Находим сначала детерминант матрицы А
значит, обратная матрица существует и мы ее можем найти по формуле: , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.

откуда .

Пример 2. Методом элементарных преобразований найти A-1 для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: .

С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.

 

Для этого поменяем местами первый и второй столбцы:

~.

К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: .

Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; .

Прибавим третий столбец к первому и второму: .

Умножим последний столбец на -1: .

Полученная справа от вертикальной черты квадратная матрица является обратной матрицей к данной матрице А. Итак,
.