Поглощение (абсорбция) света


Опр. 5.7..Поглощением (абсорбцией) света называ­ется явление потери энергии световой во­лной, проходящей через вещество, вслед­ствие преобразования энергии волны в другие формы (внутреннюю энергию вещества и в энергию вторичного излучения других направлений и спектрального состава).

В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается закономБугера:­ (5.1)

где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, а —коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света.

При интенсивность света I по сравнению с I0 уменьшается в е раз.

Поглощение света становится особенно сильным при приближении его частоты к частотам собственных колебаний электронов в атомах вещества или атомов в молекулах вещества (резонансное поглощение). Последовательность частот резонансного поглощения может в зависимости от рода и состояния вещества быть дискретной или непрерывной, а также представлять собой их комбинацию. Соответственно этому спектры поглощения называются линейчатыми, сплошными и полосатыми.

Одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (~10-12—10-11м) наблюдаются резкие максимумы (линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах – набор отдельных линий с характерными значениями длин волн, обусловленными структурой электронных оболочек атомов данного элемента.

Спектр поглощения молекулярных газов и паров, определяемый колебаниями атомов в молекулах, характеризуетсяполосами поглощения- сгруппированные по определенному закону совокупности спектральных линий. Структура этих полос определяется составом и строением молекул. Поэтому изучение спектров поглощения является одним из основных методов экспериментального исследования строения молекул.

Коэффициент поглощения для диэлектриков невелик (~10-3-10-5 см-1), но у них наблюдается селективное поглощение света в определенных интервалах длин волн, близких к собственным длинам колебаний электронов в атомах и атомов в молекулах, когда резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеютсплошной спектр поглощения,в пределахкоторых коэффициент поглощения изменяется плавно. Для света всех остальных длин волн диэлектрик практически прозрачен, т.е. близок к нулю. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях.

Коэффициент поглощения для метал­ловимеет большие значения (примерно 103—105 см~1) и поэтому металлы являют­ся непрозрачными для света. В металлах из-за наличия свободных электронов, дви­жущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся вы­делением джоулевой теплоты. Поэтому энергия световой волны быстро уменьша­ется, превращаясь во внутреннюю энер­гию металла. Чем выше проводимость ме­талла, тем сильнее в нем поглощение света.

Окрашенность поглощающих тел объясняется зависимостью коэффициента поглоще­ния от длины волны. Окраска несамосветящихся тел объясняется селективным отражением света от их поверхности и зависит: 1) от оптических свойств поверхности, 2) от спектрального состава падающего света. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться чер­ным.

Это явление используется для изго­товлениясветофильтров, которые в зави­симости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, по­глощая остальные. Разнообразие преде­лов селективного (избирательного) погло­щения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Использу­ется вабсорбционном спектральном ана­лизе смеси газов, основанном на измере­ниях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется соста­вом и строением молекул, поэтому изуче­ние спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

Но: при достаточно больших интенсивностях света коэффициент поглощения некоторых диэлектриков начинает убывать с ростом . Это явление можно объяснить только с квантовой точки зрения.