Генная инженерия

Клеточная инженерия

Клеточная инженерия – выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани. Это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Клеточная реконструкция связана с созданием жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). С помощью клеточной инженерии удается соединять геномы весьма далеких видов. Показана принципиальная возможность слияния соматических клеток животных с клетками растений. Изучение гибридных клеток позволяет решать многие теоретические проблемы биологии и медицины: выяснить взаимные влияния ядра и цитоплазмы; механизмы клеточной дифференцировки и регуляции клеточного размножения, превращения нормальной клеток в раковую и т.д.

При гибридизации искусственно объединяют целые клетки (протопласты клеток) с образованием гибридного генома. С помощью ферментов или ультразвука удаляют клеточные стенки растительных клеток и соединяют «голые» протопласты клеток. После этого клеточные стенки восстанавливаются, и образуют каллус – неорганизованная клеточная масса, вызывая дифференциацию клеток которой получают целое гибридное растение.

Клеточная инженерия широко применяется в биотехнологии, например, использование гибридов (гибридных клеток) для получения моноклональных антител. На основе генетически измененных клеток возможно создание новых форм растений, обладающих полезными признаками и устойчивых к благоприятным условиям среды и болезням.

Генная инженерия –искусственная перестройка генома. Раздел молекулярной генетики, связанный с целенаправленным созданием in vito (в пробирке) новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать продукты обмена веществ. Сопровождаться искусственным переносом нужных генов от одного вида живых организмов (бактерий, растений, животных) к другому, зачастую далекому по происхождению. Современные генные технологии используют для генотерапии, т.е. лечения наследственных болезней путем введения человеку «здоровых» генов.

Высшим достижением современной биотехнологии является генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать коренные задачи селекции биологических объектов на устойчивость, высокую продуктивность и качество продукции при оздоровлении экологической обстановки во всех видах производств. Однако для достижения этих целей предстоит преодолеть огромные трудности в повышении эффективности генетической трансформации и прежде всего в идентификации генов, создании их банков клонирования, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, обеспечении высокой экспрессии генов и создании надежных векторных систем. Уже сегодня во многих лабораториях мира, в том числе и в России, с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, получившие коммерческое признание.

Современная биотехнология

Современная биотехнология тесно стыкуется с рядом научных дисциплин, осуществляя их практическое применение или же являясь их основным инструментом (рис. 1).

Рис. 1. Связь биотехнологии с другими науками ( по В.И.Кефели, 1989)

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др. Клетки животных и человека также продуцируют ряд биологически активным соединений. Например, клетки гипофиза - липотропин, стимулятор расщепления жиров, и соматотропин - гормон, регулирующий рост.

Созданы перевиваемые культуры клеток животных, продуцирующие моноклональные антитела, широко применяемые для диагностики заболеваний. В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение. Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.