Теорема об изменении кинетической энергии системы.
Рис.50
Рис.49
При повороте на конечный угол работа будет равна
,
а в случае постоянного момента
.
Рисунок 27
Если на тело действует пара сил, лежащая в плоскости, перпендикулярной к оси Оz, то Мz будет, очевидно, означать момент этой пары.
Укажем еще, как в данном случае определяется мощность
.
Следовательно, при действии сил на вращающееся тело мощность равна произведению вращающего момента на угловую скорость тела. При той же самой мощности вращающий момент будет тем больше, чем меньше угловая скорость.
3) Работа сил трения, действующих на катящееся тело. На колесо радиуса R (рис.50), катящееся по некоторой плоскости (поверхности) без скольжения, действует сила трения F , препятствующая скольжению точки касания В вдоль плоскости. Элементарная работа этой силы . Но точка В в данном случае является мгновенным центром скоростей и . Так как , то и для каждого элементарного перемещения .
Следовательно, при качении без скольжения, работа силы трения, препятствующей скольжению, на любом перемещении тела равна нулю. По той же причине в этом случае равна нулю и работа нормальной реакции N, если считать тела недеформируемыми и силу N приложенной в точке В (как на рис.50,а).
Сопротивление качению, возникающее вследствие деформации поверхностей (pис.50,б), создает пару (), момент которой , где k- коэффициент трения качения. Тогда учитывая, что при качении угол поворота колеса , получим:
,
где - элементарное перемещение центра С колеса.
Если N= const, то полная работа сил сопротивления качению будет равна
Так как величина мала, то при наличии других сопротивлений сопротивлением качению можно в первом приближении пренебрегать.
Если рассмотреть какую-нибудь точку системы с массой , имеющую скорость , то для этой точки будет
,
где и - элементарные работы действующих на точку внешних и внутренних сил. Составляя такие уравнения для каждой из точек системы и складывая их почленно, получим
,
или
. (2)
Равенство выражает теорему об изменении кинетической энергии системы в дифференциальной форме.
Если полученное выражение отнести к элементарному промежутку времени, в течение которого произошло рассматриваемое перемещение, можно получить вторую формулировку для дифференциальной формы теоремы: производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних () и внутренних () сил, т.е.
.
Дифференциальными формами теоремы об изменении кинетической энергии можно воспользоваться для составления дифференциальных уравнений движения, но это делается достаточно редко, потому что есть более удобные приемы.
Проинтегрировав обе части равенства (2) в пределах, соответствующих перемещению системы из некоторого начального положения, где кинетическая энергия равна , в положение, где значение кинетической энергии становится равным , будемиметь
.
Полученное уравнение выражает теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.
В отличие от предыдущих теорем, внутренние силы в уравнениях не исключаются. В самом деле, если и - силы взаимодействия между точками и системы (см. рис.51), то . Но при этом точка , может перемещаться по направлению к , а точка - по направлению к . Работа каждой из сил будет тогда положительной и сумма работ нулем не будет. Примером может служить явление отката. Внутренние силы (силы давления), действующие и на снаряд и на откатывающиеся части, совершают здесь положительную работу. Сумма этих работ, не равная нулю, и изменяет кинетическую энергию системы от величины в начале выстрела до величины конце.
Другой пример: две точки, соединенные пружиной. При изменении расстояния между точками упругие силы, приложенные к точкам, будут совершать работу. Но если система состоит из абсолютно твердых тел и связи между ними неизменяемые, не упругие, идеальные, то работа внутренних сил будет равна нулю и их можно не учитывать и вообще не показывать на расчетной схеме.
Рассмотрим два важных частных случая.
1) Неизменяемая система. Неизменяемой будем называть систему, в которой расстояния между точками приложения внутренних сил при движении системы не изменяются. В частности, такой системой является абсолютно твердое тело или нерастяжимая нить.