Вынужденные колебания. Резонанс.

Рис.34

Последовательное включение упругих элементов.

Рис.33

 

Сместим массу на расстояние x.

, ,

Результирующая жесткость упругих элементов расположенных параллельно равна сумме жесткостей этих элементов.

 

Масса закреплена с помощью двух упругих элементов расположенных последовательно (рис.34).

 

Сместим массу на расстояние x. В упругих элементах возникает восстанавливающая (упругая) сила F, одинаковая для обоих элементов (рис.34). Первый упругий элемент изменит длину на x1, второй - на x2.

. , , .

, следовательно

Обратная величина результирующей жесткости упругих элементов расположенных последовательно равна сумме обратных величин жесткостей этих элементов.

Обратная величина жесткости упругого элемента называется податливостью этого элемента.

, , ,

Результирующая податливость упругих элементов расположенных последовательно равна сумме податливостей этих элементов.

 

Рассмотрим важный случай колебаний, возникающих, когда на точку, кроме восстанавливающей силы , действует еще периодически изменяющаяся со вре­менем сила, проекция которой на ось Ох равна

.

Эта сила называется возмущающей силой, а колебания, происхо­дящие при действии такой силы, называются вынужденными. Вели­чина Р является частотой возмущающей силы.

Возмущающей силой может быть сила, изменяющаяся со временем и по другому закону. Мы ограничимся рассмотрением случая, когда определяется указанным равенством. Такая возмущающая сила назы­вается гармонической.

Рассмотрим движение точки, на которую, кроме вос­станавливающей силы , действует только возмущаю­щая сила . Дифференциальное уравнение движения в этом случае

.

Разделим обе части этого уравнения на т и положим

.

Тогда, учитывая обозначение, приведем уравнение движения к виду

.

Уравнение является дифференциальным уравнением вынуж­денных колебаний точки при отсутствии сопротивления. Его решением, как известно из теории дифференциальных уравнений, будет , где -общее решение уравнения без правой части, а - какое-нибудь частное решение полного уравнения.

Полагая, что p = k, будем искать решение в виде

,

где А - постоянная величина, которую надо подобрать так, чтобы равенство обратилось в тождество. Подставляя значение и его второй производной в уравнение будем иметь:

.

Это равенство будет выполняться при любом t, если или

.

Таким образом, искомое частное решение будет

.

Так как , а общее решение имеет окончательно вид

,

где а и - постоянные интегрирования, определяемые по начальным данным. Решение показывает, что колебания точки складываются в этом случае из: 1) колебаний с амплитудой а (зависящей от на­чальных условий) и частотой k, называемых собственными колеба­ниями, и 2) колебаний с амплитудой А (не зависящей от начальных условий) и частотой р, которые называются вынужденными колеба­ниями

Частота р вынужденных колебаний, как видно, равна частоте воз­мущающей силы. Амплитуду этих колебаний, если разделить числи­тель и знаменатель на , можно представить в виде:

,

где , т. е. есть величина статического отклонения точки под действием силы . Как видим, A зависит от отношения частоты р возмущающей силы к ча­стоте k собственных колебаний.

Подбирая различ­ные соотношения между р и k, можно получить вынужденные коле­бания с разными амплитудами. При амплитуда равна (или близка к этой величине). Если величина р близка к k, амплитуда A становится очень большой. Когда , амплитуда A становится очень малой (практически близка к нулю).

Резонанс. В случае, когда , т.е. когда частота возму­щающей силы равна частоте собственных колебаний, имеет место так называемое явление резонанса. Размахи вынужденных колебаний при резонансе будут со временем неограниченно возрастать так, как показано на рис.35.