Вынужденные колебания. Резонанс.
Рис.34
Последовательное включение упругих элементов.
Рис.33
Сместим массу на расстояние x.
, ,
Результирующая жесткость упругих элементов расположенных параллельно равна сумме жесткостей этих элементов.
Масса закреплена с помощью двух упругих элементов расположенных последовательно (рис.34).
Сместим массу на расстояние x. В упругих элементах возникает восстанавливающая (упругая) сила F, одинаковая для обоих элементов (рис.34). Первый упругий элемент изменит длину на x1, второй - на x2.
. , , .
, следовательно
Обратная величина результирующей жесткости упругих элементов расположенных последовательно равна сумме обратных величин жесткостей этих элементов.
Обратная величина жесткости упругого элемента называется податливостью этого элемента.
, , ,
Результирующая податливость упругих элементов расположенных последовательно равна сумме податливостей этих элементов.
Рассмотрим важный случай колебаний, возникающих, когда на точку, кроме восстанавливающей силы , действует еще периодически изменяющаяся со временем сила, проекция которой на ось Ох равна
.
Эта сила называется возмущающей силой, а колебания, происходящие при действии такой силы, называются вынужденными. Величина Р является частотой возмущающей силы.
Возмущающей силой может быть сила, изменяющаяся со временем и по другому закону. Мы ограничимся рассмотрением случая, когда определяется указанным равенством. Такая возмущающая сила называется гармонической.
Рассмотрим движение точки, на которую, кроме восстанавливающей силы , действует только возмущающая сила . Дифференциальное уравнение движения в этом случае
.
Разделим обе части этого уравнения на т и положим
.
Тогда, учитывая обозначение, приведем уравнение движения к виду
.
Уравнение является дифференциальным уравнением вынужденных колебаний точки при отсутствии сопротивления. Его решением, как известно из теории дифференциальных уравнений, будет , где -общее решение уравнения без правой части, а - какое-нибудь частное решение полного уравнения.
Полагая, что p = k, будем искать решение в виде
,
где А - постоянная величина, которую надо подобрать так, чтобы равенство обратилось в тождество. Подставляя значение и его второй производной в уравнение будем иметь:
.
Это равенство будет выполняться при любом t, если или
.
Таким образом, искомое частное решение будет
.
Так как , а общее решение имеет окончательно вид
,
где а и - постоянные интегрирования, определяемые по начальным данным. Решение показывает, что колебания точки складываются в этом случае из: 1) колебаний с амплитудой а (зависящей от начальных условий) и частотой k, называемых собственными колебаниями, и 2) колебаний с амплитудой А (не зависящей от начальных условий) и частотой р, которые называются вынужденными колебаниями
Частота р вынужденных колебаний, как видно, равна частоте возмущающей силы. Амплитуду этих колебаний, если разделить числитель и знаменатель на , можно представить в виде:
,
где , т. е. есть величина статического отклонения точки под действием силы . Как видим, A зависит от отношения частоты р возмущающей силы к частоте k собственных колебаний.
Подбирая различные соотношения между р и k, можно получить вынужденные колебания с разными амплитудами. При амплитуда равна (или близка к этой величине). Если величина р близка к k, амплитуда A становится очень большой. Когда , амплитуда A становится очень малой (практически близка к нулю).
Резонанс. В случае, когда , т.е. когда частота возмущающей силы равна частоте собственных колебаний, имеет место так называемое явление резонанса. Размахи вынужденных колебаний при резонансе будут со временем неограниченно возрастать так, как показано на рис.35.