Потенциальная энергия

Рис.22

Рис.21

Рис.20

Рис.19

Тогда Рx=0, Рy=0, Pz= -Р. Подставляя эти значения и учитывая перемен­ную интегрирования z:

.

Если точка M0 выше М1, то , где h-величина вер­тикального перемещения точки;

Если же точка M0 ниже точки M1то .

Окончательно получаем: .

Следовательно, работа силы тяжести равна взятому со зна­ком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной. Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения.

Силы, обла­дающие таким свойством, назы­ваются потенциальными.

2) Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис.20,а). Отметим на плоскости точкой О поло­жение, занимаемое концом пружины, когда она не напряже­на (- длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О, удлинив пружину до величины , то на груз будет действовать сила упругости пружины F, направленная к точке О.

 

По закону Гука величина этой силы пропорциональна удлинению пружины . Так как в нашем случае , то по модулю .

Коэффициент сназывается коэффициентом жесткости пружины. В технике обычно измеряют величину с в H/см, полагая коэф­фициент с численно равным силе, которую надо приложить к пру­жине, чтобы растянуть ее на 1 см.

Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение . Так как в данном случае , , то получим:

.

(Этот же результат можно получить по графику зависимости F от х (рис.20, б), вычисляя площадь заштрихованной на чертеже тра­пеции и учитывая знак работы.) В полученной формуле представ­ляет собою начальное удлинение пружины , а конечное удлинение пружины . Следовательно,

,

т.е. работа силы упругости равна половине произведения коэффи­циента жесткости на разность квадратов начального и конеч­ного удлинений (или сжатий) пружины.

Работа будет положительной, когда , т. е. когда конец пружины перемещается к равновесному положению, и отрица­тельной, когда , т.е. конец пружины удаляется от равновесия положения. Можно доказать, что формула ос­тается справедливой и в случае, когда пе­ремещение точки М не является прямо­линейным.

Таким образом, оказывается, что работа силы F зависит только от значе­ний и и не зависит от вида траектории точки М. Следовательно, сила упругости также является потенциальной.

 

3) Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис. 21) или кривой. Действующая на точку сила трения равна по модулю fN, где f-коэффициент трения, а -нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, Fтр=-fN и по формуле

.

Если величина силы трения постоянна, то , где s-длина дуги кривой М0М1 по которой перемещается точка.

Таким образом, работа силы трения при скольжении всегда отрицательна. Величина этой работы зависит от длины дуги М0М1 . Следовательно, сила трения является силой непотенциальной.

4) Работа силы, приложенной к телу, вращающемуся вокруг неподвижной оси.

В этом случае (рис.22) точка приложения силы движется по окружности радиуса r. Элементарная работа, по (1), , где .

 

Поэтому .

Но .

Это нетрудно установить, разложив силу на три составляющие (рис. 22). (Моменты сил и равны нулю). Значит,

(2)

В частности, если момент силы относительно оси , работа силы при повороте тела на угол равна

. (3)

Знак работы определяется знаками момента силы и угла поворота. Если они одинаковы, работа положительная.

Из формулы (3) следует и правило определения работы пары сил. Если пара с моментом m расположена в плоскости перпендикулярной оси вращения тела, то ее работа при повороте тела на угол

. (4)

Если же пара сил действует в плоскости не перпендикулярной оси вращения, то ее надо заменить двумя парами. Одну расположить в плоскости перпендикулярной оси, другую – в плоскости параллельной оси. Моменты их определяются разложением вектора момента по соответствующим направлениям: . Конечно работу будет совершать только первая пара с моментом , где – угол между вектором и осью вращения z,

. (5)

Часть пространства, в которой на помещенную туда материальную точку действует сила, зависящая от места положения точки, называется силовым полем.

Причем, эта сила определяется с помощью силовой функции u = u(x, y, z). Если она не зависит от времени, то такое поле называется стационарным. Если во всех точках она одинакова, то поле – однородное.

Если же проекции силы на декартовы оси есть частные производные от силовой функции по соответствующим координатам

, , , (6)

то такое поле называется потенциальным.

Вычислим работу силы потенциального поля при перемещении точки из положения М1 в положение М2. (рис. 23).