Шина ISA (Industrial Standard Architecture)

Шина, как известно, представляет из себя, собственно, набор проводов (линий), соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. В "минимальной комплектации" шина имеет три типа линий:

 

линии управления;
линии адресации;
линии данных.

 

Устройства, подключенные к шине, делятся на две основных категории - bus masters и bus slaves. Bus masters - это устройства, способные управлять работой шины, т.е инициировать запись/чтение и т.д. Bus slaves - соответственно, устройства, которые могут только отвечать на запросы. Правда, есть еще "интеллектуальные слуги" (intelligent slaves), но мы их пока не рассматриваем. Ну вот, собственно, и все, что нужно знать про шины для того, чтобы понять, о чем пойдет речь дальше.

в компьютерах IBM-AT ('Advanced Technology') в 1984 году была представлена новая версия шины, впоследствии названной ISA. Сохраняя совместимость со старыми 8-битными платами расширения, новая версия шины обладала рядом существенных преимуществ, как то:

 

добавление 8 линий данных позволило вести 16-битный обмен данными;
добавление 4 линий адреса позволило увеличить максимальный размер адресуемой памяти до 16 МВ;
были добавлены 5 дополнительных trigger-edged линий IRQ;
была реализована частичная поддержка дополнительных bus masters;
частота шины была увеличена до 8 MHz;
пропускная способность достигла 5.3 МВ/сек.

 

4.3.1.2 Шина PCI (Peripheral Component Interconnect bus)

 

шина имеет следующие преимущества:

1. процессоро-независимая (в отличие от VLbus),

2. может работать параллельно с шиной процессора, не обращаясь к ней за запросами. Например, процессор работает себе с кэшем или системной памятью, а в это время по сети на винчестер пишется информация.

 

Основные возможности шины следующие.

· Синхронный 32-х или 64-х разрядный обмен данными (правда, насколько мне известно, 64-разрядная шина в настоящее время используется только в Alpha-системах и серверах на базе процессоров Intel Xeon, но, в принципе, за ней будущее). При этом для уменьшения числа контактов (и стоимости) используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям.

· Поддержка 5V и 3.3V логики. Разъемы для 5 и 3.3V плат различаются расположением ключей.

PCI Express

В отличие от PCI или PCI-X, шина PCI Express (или PCIE) является последовательной. То есть она использует небольшое число контактов. В то же время, частота работы шины намного выше частоты PCI, что обеспечивает высокую пропускную способность. К тому же, новая шина является масштабируемой и позволяет легко нарастить пропускную способность, объединяя несколько линий PCI Express. Спецификация описывает пять различных типов слотов: x16, x8, x4, x2 и x1.

PCI Express является двунаправленной связью точка-точка, то есть она обеспечивает одинаковую пропускную способность в обоих направлениях и не разделяет её с другими устройствами, как происходит в случае с параллельной шиной PCI. Из-за модульной архитектуры PCI Express производители материнских плат получили возможность распределить доступные ресурсы PCI Express в нужной им конфигурации. Общее количество линий PCI Express составляет 20, поэтому их можно распределить на один слот x16 PCIE и четыре слота x1 PCIE. Собственно, такая конфигурация и является самой распространённой у чипсетов intel9xx. Или можно реализовать пять портов x4 PCIE - для серверной системы среднего уровня. К тому же, шина PCI Express позволяет устанавливать оборудование от разных производителей.

Шина PCI Express заменит как обычную PCI, так и AGP. Хотя Intel не поддерживает AGP на новых чипсетах, мы думаем, что этот интерфейс продолжит своё присутствие на рынке, примерно, до2005г. Исчезновения шины PCI можно ждать ещё дольше, однако сегодня его поддержка не требует особых затрат, поэтому здесь никаких проблем не предвидится.

Линии PCI Express Пропускная способность в одном направлении Суммарная пропускная способность, дуплекс
256 Мбайт/с 512 Мбайт/с
512 Мбайт/с 1 Гбайт/с
1 Гбайт/с 2 Гбайт/с
2 Гбайт/с 4 Гбайт/с
4 Гбайт/с 8 Гбайт/с
32* 8 Гбайт/с 16 Гбайт/с


Не планируется на настольных системах.

 

4.3.1.3 Шина AGP (Accelerated Graphic Port)

 

Как это практически всегда бывает в компьютерной индустрии, вопрос решен не был. Казалось бы, вот вам простейшее решение: переходите на 66-мегагерцовую 64-разрядную шину PCI с огромной пропускной способностью, так нет же. Intel на базе того же стандарта PCI R2.1 разрабатывает новую шину - AGP (R1.0, затем 2.0), которая отличается от своего "родителя" в следующем:

1. шина способна передавать два блока данных за один 66 MHz цикл (AGP 2x);

2. устранена мультиплексированность линий адреса и данных (напомню, что в PCI для удешевления конструкции адрес и данные передавались по одним и тем же линиям);

3. дальнейшая конвейеризация операций чтения/записи, по мнению разработчиков, позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

В результате пропускная способность шины была оценена в 500 МВ/сек, и предназначалась она для того, чтобы видеокарты хранили текстуры в системной памяти, соответственно имели меньше памяти на плате, и, соответственно, дешевели. Появление новых, больших по объему и при этом довольно дешевых, микросхем памяти, производители видеоадаптеров использовали иначе. В продаже появились 64х и даже 256Мегабайтные AGP видеокарты многократно превосходя по качеству предшественников.

 

4.3.2 Коммуникационные порты

 

Коммуникационные порты персональных компьютеров представлены низкоскоростными интерфейсами. К ним относят параллельный синхронный – Centronics и последовательный асинхронный – RS-232С. Данная аппаратура используется для связи с различными периферийными устройствами. Как правило, персональные компьютеры IBM комплектуются одним, двумя или тремя параллельными портами, носящими в системе названия – LPT1, LPT2 и LPT3 и двумя или четырьмя последовательными портами – носящими названия COM1, COM2, COM3, и COM4. Последовательные и параллельные интерфейсы (порты) могут располагаться как на материнских платах компьютеров, так и на платах расширений (интерфейсных адаптерах дисковой системы, видеокартах, мультикартах ввода/вывода) или на собственных специализированных интерфейсных платах.

 

 

Параллельные интерфейсы – LPT порты

 

Параллельные интерфейсы получили свое название благодаря методу передачи данных, т.к. они имеют восемь разрядов шины данных и способны передавать информацию байтами синхронно по восьми проводникам.

Сигналы данных могут дополнительно обеспечиваться собственными сигнальными линиями заземления – по одному на каждый канал данных. В таком случае, число сигналов возрастает до 25. Для соединения компьютера с устройством при помощи параллельного интерфейса используется 25-ти контактный разъем Centronics. Параллельные интерфейсы имеют высокую скорость передачи данных (до 150 К/сек) и низкую помехоустойчивость, что позволяет использовать кабель длинною не более трех метров. Чаще всего они используются для соединения компьютера с печатающими устройствами или двух компьютеров с целью интенсивного обмена данными.Последовательные интерфейсы – COM порты

 

Последовательные интерфейсы передают данные последовательно по одному биту, с синхронизацией, основанной на паритете, четности и стоповых битах. Для передачи и приема в них используется два канала – один для передачи и один – для приема, и несколько дополнительных сигнальных линий.

Для соединения при помощи последовательных портов используются 9-ти и 25-ти контактные соединительные разъемы COM портов. Последовательные коммуникационные порты имеют достаточно низкие скорости работы (50, 75, 100, 110, 200, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57000 и 115000 бит/сек) и высокую помехоустойчивость, что позволяет использовать соединительный кабель до 75 метров и более. Последовательные порты являются устройствами общего назначения и имеют разнообразное использование. Они применяются как для соединения компьютера с печатающими устройствами, терминалами, коммуникационными устройствами (факс-модем, модем), манипуляторами, ручными сканерами и т.п., так и для соединения двух компьютеров.

Как последовательные, так и параллельные интерфейсы имеют различное число расширенных дополнительных сигнальных линий, применяемых для диагностики состояний обслуживаемых устройств и передачи сигналов специального назначения. Поэтому общее число используемых каналов для передачи сигналов последовательных и параллельных интерфейсов различно. Программирование коммуникационных портов осуществляется при помощи стандартного интерфейса их контроллеров. Каждый контроллер имеет группу адресов портов ввода/вывода, отображенных на память, что позволяет, при помощи записи или чтения значений по этим адресам принимать и передавать данные и управлять этими процессами. Адреса регистров портов и аппаратные прерывания, используемые ими представлены ниже:

 

Порт Адрес Прерывание
COM1 3F8 IRQ4
COM2 2F8 IRQ3
COM3 3E8 IRQ4
COM4 2E8 IRQ3
LPT1 3BC IRQ7
LPT2 IRQ5
LPT3 IRQ11

 

Операционные системы, обычно, контролируют низкоуровневое управление портами, предоставляя программам документированный высокоуровневый интерфейс с ними как с символьными устройствами, файлами или каналами, допускающими чтение, запись и оценку состояния. Также, используется протоколы интерфейсов с типовыми устройствами – например с принтерами. Как в параллельных, так и последовательных интерфейсах используется внутренняя (на уровне базовой системы ввода/вывода и аппаратуры) и внешняя (на уровне операционной системы) буферизация данных, что существенно повышает их быстродействие. Область применения параллельных и последовательных портов не меняется на протяжении всего периода развития персональных компьютеров IBM-PC. Они по прежнему представляют собой универсальные интерфейсы и служат самым разнообразным целям.

 

 

4.3.2.3 USB-порты

 

Спецификация периферийной шины USB разработана лидерами компьютерной и телекоммуникационной промышленности -- Compaq, DEC, IBM, Intel, Microsoft, NEC и Northern Telecom -- для подключения компьютерной периферии вне корпуса машины по стандарту plug'n'play, в результате отпадает необходимость в установке дополнительных плат в слоты расширения и переконфигурировании системы. Персональные компьютеры, имеющие шину USB, позволяют подключать периферийные устройства и осуществляют их автоматическое конфигурирование, как только устройство физически будет присоединено к машине, и при этом нет необходимости перезагружать или выключать компьютер, а так же запускать программы установки и конфигурирования. С появлением большого количества устройств пользователя бытового и профессионального назначения(цифровых видеокамер, фотоаппаратов, диктофонов, мобильных телефонов, принтеров, сканеров и т.п.), использующих USB, сразу отразилось в увеличении соответствующих разъемов и сокращении портов LPT и COM. Возможности USB следуют из ее технических характеристик:

§ Высокая скорость обмена (full-speed signaling bit rate) - 12 Mb/s

§ Максимальная длина кабеля для высокой скорости обмена - 5 m

§ Низкая скорость обмена (low-speed signaling bit rate) - 1.5 Mb/s

§ Максимальная длина кабеля для низкой скорости обмена - 3 m

§ Максимальное количество подключенных устройств (включая размножители) - 127

§ Возможно подключение устройств с различными скоростями обмена

§ Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI

§ Напряжение питания для периферийных устройств - 5 V

§ Максимальный ток потребления на одно устройство - 500 mA (это не означает, что через USB можно запитать устройства с общим током потребления 127 x 500 mA=63.5 A)

В 1999 году тот же консорциум компьютерных компаний, который инициировал разработку первой версии стандарта на шину USB, начал активно разрабатывать версию 2.0 USB, которая отличается тем, что полоса пропускания шины увеличена в 40 (!) раз, до 480 Mbits/s, что делает возможным передачу видеоданных по USB и делает ее прямым конкурентом IEEE-1394 (FireWire).
Совместимость всей ранее выпущенной периферии и высокоскоростных кабелей полностью сохраняется и сохраняется одно из самых главных достоинств USB - низкая стоимость контроллера. Контроллер стандарта 2.0 также предполагается интегрировать в chipset.
Все хорошо, но есть одно но: шина IEEE-1394 уже весьма активно используется даже в бытовых цифровых видеокамерах, для нее есть платы видеомонтажа и при постоянном падении цен на цифровые видеокамеры она, возможно, будет использоваться все шире и шире.

 

 

4.3.2.4 Firewire

 

IEEE 1394 или Firewire - это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Благодаря невысокой цене и большой скорости передачи данных эта шина становится новым стандартом шины ввода-вывода для персонального компьютера. Ее изменяемая архитектура и одноранговая топология делают Fireware идеальным вариантом для подключения жестких дисков и устройств обработки аудио- и видеоинформации. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени.

Как можно сравнить USB со стандартом Sony FireWire/IEEE 1394?

Основные отличия состоят в области применения, доступности и цене.

FireWire стала доступна в простейших вариантах к началу 1998. FireWire ориентирована на подключение к персональному компьютеру бытовой электроники, требующей высокой полосы пропускания, например, цифровых камер, проигрывателей цифровых видеодисков и цифровых устройств записи.

 

Интерфейс Возможность "горячей замены" Количество поддерживаемых устройств Пропускная способность Возможность подключения по цепочке Макс. длина кабеля
Последовательный порт Нет 112.5 Кбит/с Нет 1 м
Параллелльный порт Нет 600 Кбит-1.5 Мбит/с Нет 4 м
USB, USB2.0 Да 1.5-12,480 Мбит/c Да 5 м
FireWire(a/b) Да 100 - 800 Мбит/c Да 4.5 м

 

Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, в цифровом виде.Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.

 


Тема 5. ЗАПОМИНАЮЩИЕ УСТРОЙСТВА ЭВМ

5.1. Типы запоминающих устройств

 

Запоминающие устройства классифицируют:

1. По типу запоминающих элементов (полупроводниковые, магнитные, конденсаторные, оптоэлектронные, голографические, криогенные).

2. По функциональному назначению (оперативные (ОЗУ), буферные (БЗУ), сверхоперативные (СОЗУ), внешние (ВЗУ), постоянные (ПЗУ)).

3. По способу организации обращения (с последовательным поиском, с прямым доступом, адресные, ассоциативные, стековые, магазинные).

4. По характеру считывания (с разрушением или без разрушения информации).

5. По способу хранения (статические или динамические).

6. По способу организации (однокоординатные, двухкоординатные, трехкоординатные, двух/трехкоординатные).

ПАМЯТЬ ЭВМ - совокупность всех запоминающих устройств, входящих в состав ЭВМ. Обычно в состав ЭВМ входит несколько различных типов ЗУ.

Производительность и вычислительные возможности ЭВМ в значительной степени определяются составом и характеристиками ее ЗУ.

Основными операциями в памяти в общем случае являются занесение информации в память - запись и выборка информации из памяти - считывание. Обе эти операции называются обращением к памяти или, подробнее, обращением при считывании и обращением при записи.

При обращении к памяти производится считывание или запись некоторой единицы данных - различной для устройств разного типа. Такой единицей может быть бит, байт, машинное слово или блок данных.

Важнейшими характеристиками отдельных устройств памяти являются емкость памяти, удельная емкость, быстродействие.

Емкость памяти определяется максимальным количеством данных, которые могут в ней храниться. Емкость измеряется в двоичных единицах (битах), машинных словах, но большей частью в байтах.

Удельная емкость есть отношение емкости ЗУ к его физическому объему.

Быстродействие памяти определяется продолжительностью операций обращения, т.е. временем, затрачиваемым на поиск единицы информации в памяти и на ее считывание, или временем на поиск места в памяти, предназначенного для хранения данной единицы информации, и на ее запись.

ВЗУ (внешнее запоминающее устройство) - запоминающее устройство, предназначенное для длительного хранения массивов информации и обмена ими с ОЗУ. Обычно строятся на базе магнитных носителей информации. Само название этого класса устройств имеет исторический характер и произошло от больших ЭВМ, в которых все ВЗУ, как более медленные и громоздкие, размещались в собственном корпусе, а не в корпусе основного модуля.

Внутренняя память ЭВМ организуется как взаимосвязанная совокупность нескольких типов ЗУ. В ее состав, кроме ОЗУ, могут входить следующие типы ЗУ:

Постоянное запоминающее устройство (пзу) - запоминающее устройство, из которого может производиться только выдача хранящейся в нем информации. Занесение информации в ПЗУ производится при его изготовлении.

Полупостоянное (программируемое) зу (ппзу) - ЗУ, в котором информация может обновляться с помощью специальной аппаратуры перед режимом автоматической работы ЭВМ. Если возможно многократное обновление информации, то иногда такое ППЗУ называют репрограммируемым (РППЗУ).

Буферное запоминающее устройство (бзу) - запоминающее устройство, предназначенное для промежуточного хранения информации при обмене данными между устройствами ЭВМ, работающими с различными скоростями. Конструктивно оно может быть частью любого из функциональных устройств.

Местная память (cверхоперативное ЗУ, СОЗУ) - буферное запоминающее устройство, включаемое между ОЗУ и процессором или каналами. Различают местную память процессора и местную память каналов.

СТЕК (магазин) - специально организованное ОЗУ, блок хранения которого состоит из регистров, соединенных друг с другом в цепочку, по которой их содержимое при обращении к ЗУ передается (сдвигается) в прямом или обратном направлении.

Кеш-память - разновидность стека, в котором хранятся копии некоторых команд из ОЗУ.

ВИДЕОПАМЯТЬ - область ОЗУ ЭВМ, в которой размещены данные, видимые на экране дисплея.