Энергетический баланс теплового аккумулятора
Тепловое аккумулирование энергии
Тепловое аккумулирование– это физические или химические про- цессы, посредством которых происходит накопление тепла в тепловом аккумуляторе энергии (ТАЭ).
Аккумуляторсостоит из резервуара для хранения (обычно теплоизо-
лированного), аккумулирующей среды (рабочего тела), устройств для заряд-
ки и разрядки и вспомогательного оборудования.
Аккумулирующая системахарактеризуется способами, которыми энергия для зарядки аккумулятора отбирается от источника, трансформиру- ется (при необходимости) в требуемый вид энергии и отдается потребителю.
На рис. 5.1.1 показан процесс теплового аккумулирование с использо-
ванием сосуда-аккумулятора. Баланс энергии для этого процесса в общем виде можно записать
Eвх
-Eвых
=Eак , (5.1.1)
где
Eвх
– подведенная энергия,
Eвых
– отведенная энергия,
Eак
– аккумули-
рованная энергия.
|
Применяя первый закон термодинамики для подведенной и отведенной энергии к этой открытой системе, получим основное уравнение аккумулиро- вания энергии для открытых систем в дифференциальной форме:
⎛
|
pv +gH +
c 2 ⎞
⎟
⎟
dmвх
⎛
|
pv +gH +
c 2 ⎞
⎟
⎟
dmвых -
⎝ 2 ⎠ вх ⎝
⎡⎛ c 2 ⎞ ⎤
2 ⎠ вых
,(5.1.2)
- dW
=d ⎢⎜u +gH +
|
⎟
|
mак ⎥
⎥⎦
где
mак
– масса аккумулирующей среды; u – внутренняя энергия (отсчиты-
ваемая от произвольного нулевого уровня); p – давление; v – удельный объ-
ем; g – ускорение силы тяжести; H – высота (отсчитываемая от произволь-
ного нулевого уровня); gH – удельная потенциальная энергия; c – скорость
c 2
течения;
удельная кинетическая энергия; dQ – тепло, подведенное к сис-
теме; dW – работа системы, не зависящая от переноса массы (например, при движении стенок системы, электрическая энергия, энергия вала двигателя).
Исследование общего уравнения (5.1.2) показывает, что аккумулирова- ние энергии может осуществляться в результате изменения: а) удельной внутренней энергии; б) удельной потенциальной энергии; в) удельной кине- тической энергии; г) массы системы. К тепловому аккумулированию энергии обычно относят случай (а), а также случай (б), если удельная внутренняя энергия рабочего тела выше, чем окружающей среды.
Если накопление и кинетической, и потенциальной энергии исключено
( cак
= 0 ,
H = 0 ) и если, кроме того, члены уравнения (5.1.2), соответствую-
щие кинетической и потенциальной энергиям подводимой и отводимой масс,
пренебрежимо малы, а работа ограничена движением поверхностей,
ограничивающих систему, т. е. если
dW =pак dVак , (5.1.3)
где
Vак
– объем аккумулятора;
pак
– давление в аккумуляторе, то уравне-
ние (5.1.2) преобразуется к виду, справедливому для аккумулятора тепла:
(u +
pv)вх dmвх
+ dQ - (u +
pv)вых dmвых
= d (um)ак
+ pак dVак . (5.1.4)
Используя определение энтальпии, имеем
h = u +
pv , (5.1.5)
и, следовательно, энергетический баланс (5.1.1) принимает вид
hвх dmвх
+dQ -hвых dmвых
=d (um)ак
+pак dVак . (5.1.6)
Соответственно баланс массы запишется как
dmвх
-dmвых
=dmак . (5.1.7)
Процессы зарядки и разрядки описываются в общем виде уравнениями
(5.1.4) или (5.1.6) и (5.1.7). В простых случаях возможно аналитическое ре- шение. В других, более сложных случаях могут быть получены численные решения (в особенности это относится к процессу разрядки).