Параграф 2.2: Искажения и помехи в каналах связи.

Раздел 2: Каналы электросвязи

Параграф 2.1: Определение классификации каналов связи.

Каналом передачи информации называется совокупность технических средств, предназначенных для передачи сообщений. Под техническими средствами при этом понимаются как технические устройства, осуществляющие обработку сообщений сигналов, так и линии связи, физическая среда, в которой располагается сигнал между функциями связи.

Классификация каналов связи возможна по следующим признакам:

1. по назначению

2. по характеру линии связи

3. по диапазону используемых ими частот

4. по характеру сигнала на входе и выходе канала

По назначению каналы делят:

­ телефонные

­ телеграфные

­ передача данных

­ телевизионные

­ фототелеграфные

­ звукового вещания

В зависимости от того, распространяется сигнал между пунктами связи в свободном пространстве или по направленным линиям различают:

­ канал радиосвязи

­ канал проводной связи (воздушные, кабельные, волоконно-оптические линии связи)

На воздушных проводных линиях используются частоты не свыше 150кГц, т.к. на более высоких частотах возрастают помехи и увеличиваются затухания. Коаксиальные кабели, являющиеся основой сетей магистральной дальней связи пропускают диапазон частот до сотен МГц. Радиосвязь осуществляется с помощью электромагнитных волн, распространяется в частично ограниченном(например: землей и ионосферой) пространстве. В настоящее время в радиосвязи применяют частоты примерно от 3*103 – 3*1012Гц. Этот диапазон принято в соответствии с десятичной классификации подразделять следующим образом:

Наименование волн Длина волн Наименование частот Частоты
Декакилометровые (сверх длинные; СВД) 100…10 км ОНЧ 3…30 кГц
Километровые (длинные; ДВ) 10…1 км НЧ 30…300 кГц
Гектаметровые (средние; СВ) 1000…100 м СЧ 300…3000 кГц
Декаметровые (короткие; КВ) 100…10 м ВЧ 3…30 МГц
Метровые (ультракороткие; УКВ) 10…1 м ОВЧ 30…300 МГц
Дециметровые 100…10 см УВЧ 300…3000 МГц
Сантиметровые 10…1 см СВЧ 3…30 ГГц
Миллиметровые 10…1 мм КВЧ 30…300 ГГц
Децимиллиметровые 1…0,1 мм ГПЧ 300…3000 ГГц

В таблице, в скобках, указаны не стандартные, но используемые на практике названия диапазонов волн. Диапазон децимиллиметровых волн уже вплотную подходит к диапазону инфракрасных волн. В настоящее время, благодаря созданию и широкому внедрению квантовых генераторов или лазеров, освоен и диапазон световых волн (оптический диапазон). Практически, в оптико-волоконных линиях связи используются частоты порядка 1014 Гц (длины волн:1,55; 1,35; 0,85 микронов). Для современного этапа развития техники связи характеризуется тенденция к переходу на более высокие частоты. Это вызвано необходимостью повышать скорость передачи информации, меньше интенсивность помех, высокочастотный диапазон, возможность применения помехоустойчивых широкополосных методов модуляции. Применение систем связи с расширенным спектром дает дополнительные возможности по защите информации. По характеру сигналов на входе и выходе канала различают:

­ дискретные каналы

­ непрерывные каналы

­ полунепрерывные каналы

Всякий дискретный и полу непрерывный канал обязательно содержит внутри себя непрерывный канал – линию связи. Дискретность и непрерывность канала не связана с характером передаваемых сообщений. Можно передавать дискретные сообщения по непрерывному каналу и наоборот.

Передача сообщений и соответствующих им электрических сигналов через реальные каналы связи сопровождается их изменениями. Эти изменения обусловлены несовершенством реальных каналов. Их можно подразделить:

­ детерминированные

­ случайные

Детерминированные изменения сигнала в непрерывном канале определяется построением канала и сводится к изменению масштаба (ослаблению или усилению), задержки (изменение формы сигнала). В дискретном канале детерминированные изменения приводят лишь к задержке, т.к. там входные и выходные сигналы имеют фиксированную импульсную форму. Случайные изменения сигнала в непрерывном так и в дискретном каналах обусловлены помехой, действующей в непрерывном канале. Помеха – случайный процесс, налагающийся на передаваемые сигналы, а также, случайные изменения параметров канала, например, коэффициент передачи. В непрерывном канале, помеха приводит к случайным изменениям формы, масштаба и задержки сигнала. В дискретном канале – к ошибкам. С точки зрения передачи информации, важно подразделение изменения сигнала на обратимые, т.е не приводящие к потере информации и необратимые. Детерминированным обратным преобразованием входного сигнала является преобразование вида:

.

Выходной канал Y(t) отличается от входного X(t) масштабом k и задержкой t. Масштаб может быть легко восстановлен с помощью соответствующего усиления или ослабления сигнала. Задержка сигнала приводит к задержке приема сообщений. Если X(t) в последнем выражении узкополосный сигнал, его удобно представить в квазигармонической форме:

,

где - медленно меняющиеся функции времени. При малой задержке t, можно считать, что , и выходной сигнал канала Y(t) можно записать в виде:

- фазовый сдвиг в канале.

При узкополосном сигнале малая задержка сводится к некоторому сдвигу фаз. Необратимыми изменениями сигнала являются изменения его формы, вызываемые влиянием линейных и нелинейных искажений и помех. При введении этих понятий полагаем, что канал имеет эквивалентную схему замещения в виде четырехполюсника с постоянными параметрами.

Линейными искажениями называются изменения сигнала, которые возникают в инерционном (содержит реактивные элементы) линейном четырехполюснике с постоянными параметрами. Во временной области линейные искажения объясняются отличием формы импульсной реакции от . Условием отсутствия искажений является равенство , которое точно возможно только в безынерционном четырехполюснике. При выполнении этого условия, сигнал на выходе канала связан с входным сигналом X(t) в соответствии с интегралом Дюамеля случайным соотношением:

Откуда, в соответствии с фильтрующим свойством d функции , что соответствует случаю наличия в канале лишь обратимых искажений. В частотной области линейные искажения объясняются нарушением тех соотношений амплитуд и фаз гармонических составляющих, которые существуют в передаваемом сигнале. Нарушения соотношений амплитуд называют частотными, а фаз – фазовыми искажениями. Для их отсутствия нужно, чтобы для всех гармонических составляющих сигнала были одинаковы: , .

Поскольку , для выполнения равенства необходимо, чтобы была линейной функцией частоты, т.е. , где . Неравномерность амплитудно-частотной характеристики и нелинейность фазы частотной характеристики приводит к возникновению искажений формы передаваемых импульсов. Импульсы расплываются во времени вследствие чего, возникает их взаимная (межсимвольная) интерференция (наложение).

Нелинейными называются искажения сигнала, которые возникают в нелинейном безынерционном четырехполюснике с постоянными параметрами из-за нелинейности их амплитудных характеристик.

Амплитудной характеристикой называется зависимость сигнала на выходе четырехполюсника от сигнала на его входе . Коэффициент передачи четырехполюсника в случаи, когда такая зависимость нелинейная, зависит от уровня поступающего на его вход сигнала.

В результате нелинейных искажений, спектры сигналов расширяются, в них появляются дополнительные гармонические составляющие, вследствие чего, форма сигналов также изменяется.

Для рассмотрения помех в непрерывных каналах выходной сигнал Y(t) можно представить в виде:

,

где X(t) – входной сигнал, - случайный процесс, описывающий флуктуацию коэффициента передачи канала, - случайный процесс, независимый от значений сигнала X(t). Приведенное выражение показывает, что на полезный сигнал в канале накладывается два случайных процесса и . Первый из них является следствием наличия в канале мультипликативных помех, - является аддитивной помехой. Принципиальное отличие между ними состоит в том, что влияние мультипликативных помех и пропорциональность входному сигналу, в то время, как уровень аддитивной помехи не зависит от входного сигнала. Непосредственно мультипликативной помехой называется процесс, фигурирующий в равенстве: .

Аддитивная помеха обусловлена возникновением в канале случайной ЭДС. Основные причины, вызывающие аддитивные помехи:

1. тепловые шумы в радиоэлектронных элементах

2. наводки, обусловленные природными или промышленными процессами.

Аддитивные помехи делят:

­ сосредоточенные

­ флуктуационные

Сосредоточенные характеризуются сосредоточенностью энергии в полосе частот (узкополосные или сосредоточенные по спектру) или на отрезке времени (импульсные помехи). Узкополосная помеха имеет спектр, составляющий наибольшую часть полосы пропускания каналов. Чаще всего эти помехи обусловлены действием посторонних источников, например, соседних станций в радиосвязи. Импульсные помехи – случайные последовательности относительно коротких импульсов, создаваемые промышленными установками и атмосферными источниками.

Флуктуационная помеха занимает промежуточное положение между сосредоточенными по спектру импульсными помехами. Она характеризуется размытостью энергии по частоте и по времени, поэтому подавить ее невозможно. Борьба с флуктуационной помехой реализуется путем использования оптимальных методов приема сигналов. Основная причина возникновения – тепловой шум, математической моделью которого является белый шум.

Мультипликативная помеха обуславливается случайными изменениями коэффициента передачи канала, они возникают из-за изменения характеристик среды, в которой располагаются сигналы; коэффициента усиления электронных схем при изменении питающих напряжения; из-за замирания сигналов в результате взаимного наложения и различных затуханий при многолучевом распространение радиоволн.

Помимо мультипликативных и аддитивные помех существуют помехи, влияние которых на сигнал зависит от самого сигнала нелинейным образом. К числу таких помех относится, например, существующие для оптических каналов связи помехи квантовый шум, вызванный дискретной природой излучения светового сигнала. Интенсивность этой помехи коррелированна с интенсивностью самого сигнала.