Перестановки с повторениями и полиномиальная формула.

Разбиение n- множества на попарно непересекающиеся классы с известным набором чисел элементов классов называется разбиением на блоки длины , где 1£n1, …, nk£n, а n1+…+nk=n.

Теорема 1. Пусть – число разбиений n-множества длины . Тогда .

Доказательство. Пусть множество разбито на блоки M1,…,Mk, такие, что |M1|=n1,…,|Mk|=nk, 1£n1,…,nk£n, n1+…+nk=n.

Элемент множества M1 можно выбрать способами, элемент множества M2способами, элемент множества M3способами и т.д. Применим правило произведения:

После сокращений получим: .

Докажем теорему о полиномиальной формуле.

Теорема 2. .

Доказательство. После раскрытия степени, подсчитываем число одночленов вида . Их столько же, сколько будет разбиений множества множителей степени на подмножества, содержащие соответственно и имеющие мощность . Потому коэффициент при одночлене равен .

Формула, доказываемая в теореме 2, называется полиномиальной (или формулой полинома Ньютона).

Перестановкой с повторениями называется размещение с повторениями по n из n элементов k-множества M (k£n) со следующим дополнительным условием: различные k элементов множества M повторяются соответственно n1,…,nk раз, 1£n1,…,nk£n, n1+…+nk=n.

Теорема 3. Число перестановок с повторениями различных k элементов n1,…,nk раз, 1£n1,…,nk£n, n1+…+nk=n, равно .

Доказательство. Пусть M – множество номеров перестановки с повторениями, одной из указанных в условии теоремы, M1,…,Mk – множества номеров с одинаковыми элементами, повторяющимися n1,…,nk раз соответственно. Тогда семейство множеств {M1,…,Mk} будет разбиением множества M на k блоков. Значит, каждой перестановке с повторениями соответствует вполне определенное разбиение множества M на k блоков. Ясно, что это соответствие является биекцией. Значит, искомое число перестановок с повторениями равно числу разбиений на k блоков .