Основные понятия проверки статических гипотез.
Пусть имеется W-пространство неизвестных параметров входящих в плотность распределения . Пространство разбито на k областей . По результатам эксперимента надо ответить на следующий вопрос:
Какой из областей принадлежит неизвестный параметр .
Определение:Предположение о том, что неизвестный параметр принадлежит, какой-либо области называется альтернативой.
Определение:Совокупность k альтернатив называется k-альтернативной гипотезой.
Замечание:В литературе альтернативой так же называется гипотеза.
Определение:Если область соответствующая какой-либо альтернативе состоит из одной точки, то это альтернатива называется простой, в противном случае сложной.
Определение: Если все альтернативы простые, то гипотеза называется простой.
Определение: Если хотя бы одна альтернатива является сложной, то гипотеза называется сложной.
Обозначим решение, что имеет место i-я альтернатива, через . Тогда построим правило, такое, что для любой (выборки), ставим в соответствие одно из решений .
Решающие правила делятся на:
- Рандомизированные;
- Нерандомизированные.
Рандомизированные:
, где , (решение выносится случайным образом).
Нерандомизированные:
Выборка разбивается на k областей и попадание точки в i-ю область приводит к вынесению решения .
Мы будем рассматривать рандомизированные решающие правила и 2-альтернативные гипотезы:
.