Решение задачи №16

1. Линейное уравнение множественной регрессии y от х1 и х2 имеет вид: . Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе: .

Расчет b-коэффициентов выполним по формулам

,

Получим уравнение:

Для построения уравнения в естественной форме рассчитаем и , используя формулы для перехода от к :

Значение определим из соотношения

Для характеристики относительной силы влияния и на рассчитаем средние коэффициенты эластичности:

С увеличением средней заработной платы на 1% от ее среднего уровня средний душевой доход возрастает на 1,02% от своего среднего уровня; при повышении среднего возраста безработного на 1% среднедушевой доход снижается на 0,87% от своего среднего уровня. Очевидно, что сила влияния средней заработной платы на средний душевой доход оказалась больше, чем сила влияния среднего возраста безработного . К аналогичным выводам о силе связи приходим при сравнении модулей значений и :

.

Различия в силе влияния фактора на результат, полученные при сравнении и , объясняются тем, что коэффициент эластичности исходит из соотношения средних: а - коэффициент - из соотношения средних квадратических отклонений: .

2. Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:

;

;

.

Если сравнить значения коэффициентов парной и частной корреляции, то приходим к выводу, что из-за слабой межфакторной связи коэффициенты парной и частной корреляции отличаются незначительно: выводы о тесноте и направлении связи на основе коэффициентов парной и частной корреляции совпадают:

.

Расчет линейного коэффициента множественной корреляции выполним с использованием коэффициентов и :

.

Зависимость от и характеризуется как тесная, в которой 72% вариации среднего душевого дохода определяются вариацией учтенных в модели факторов: средней заработной платы и среднего возраста безработного. Прочие факторы, не включенные в модель, составляют соответственно 28% от общей вариации .

3.Общий - критерий проверяет гипотезу о статистической значимости уравнения регрессии и показателя тесноты связи ( ):

 

Сравнивая и , приходим к выводу о необходимости отклонить гипотизу , так как С вероятностью делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи которые сформировали под неслучайным воздействием факторов и .

Частные -критерии - и оценивают статистическую значимость присутствия факторов и в уравнении множественной регрессии, оценивают целесообразность включения в уравнение одного фактора после другого фактора, т.е. оценивает целесообразность включения в уравнение фактора после того, как в него был включен фактор . Соответственно указывает на целесообразность включения в модель фактора после фактора :

= ,

.

Сравнивая и приходим к выводу о целесообразности включения в модель фактора после фактора , так как . Гипотезу о несущественности прироста за счёт включения дополнительного фактора отклоняем и приходим к выводу о статистически подтвержденной целесообразности включения фактора после фактора .

Целесообразность включения в модель фактора после фактора проверяет :

= .

Низкое значение свидетельствует о статистической незначимости прироста за счёт включения в модель фактора (средний возраст безработного). Это означает, что парная регрессионная модель зависимости среднего дохода от средней заработной платы является достаточно статистически значимой, надёжной и что нет необходимости улучшать её, включая дополнительный фактор (средний возраст безработного).