Основные параметры и характеристики каналов.

Канал ТЧ является основным на первичной сети. Он служит единицей при определении ёмкости СП и предназначен для передачи телефонных, телеграфных, факсимильных сигналов и сигналов передачи данных между станциями и узлами первичной сети связи. Каналы ТЧ образуются с помощью как СП с ЧРК, так и ЦСП с ИКМ. В соответствии со специфическими особенностями этих систем некоторые параметры образуемых ими каналов ТЧ также различны. Упрощенная схема организации канала ТЧ приведена на рисунке 3.1

Рисунок 3.1 – Упрощённая схема организации канала ТЧ.

Телефонный канал включает в себя двухпроводное окончание и четырехпроводный тракт.Дифсистема (ДС) служит для перехода с четырехпроводного тракта к двухпроводному окончанию [5]. Удлинители в двухпроводном окончании имеют затухание 3.5 дБ и называются транзитными. Характеристики канала ТЧ нормируются рекомендациями МСЭ-Т серии М.

Нормированные (номинальные) измерительные уровни в стандартных точках канала ТЧ составляют: на входе канала 0 дБм, на выходе транзитного удлинителя минус 3.5 дБм, на входе четырехпроводного тракта минус 13 дБм, на выходе четырехпроводного тракта 4.3 дБм, на входе транзитного удлинителя минус 3.5 дБм и на выходе канала минус 7 дБм на частоте 800 Гц (1020 Гц для каналов, образованных ЦСП).

Эффективно передаваемая полоса частот канала 0.3…3.4 кГц. Средняя длительная мощность сигналов, передаваемых по каналу ТЧ, должна быть не более 32 мкВт, а максимальная, определённая с вероятностью превышения 10 -3, –1250 мкВт0. номинальное значение остаточного затухания канала Аост = 7 дБ при двухпроводном и Аост = –17 дБ при четырёхпроводном окончаниях.

Входное ZВХ и выходное ZВЫХ сопротивления канала ТЧ равны 600 Ом. Отклонение входного и выходного сопротивлений от номинального ZН оценивается коэффициентом отражения, равным

, (3.1)

или затуханием несогласованности (отражения)

, (3.2)

где ZР – реальное значение сопротивления. Значение не должно превышать 10%.

Многоканальные системы передачи с частотным и временным разделением каналов – это сложный комплекс технических средств, включающий в себя оконечную аппаратуру, устанавливаемую на оконечных пунктах (ОП), промежуточную аппаратуру, размещаемую в обслуживаемых (ОУП) или необслуживаемых (НУП) усилительных пунктах, а также линий связи (рисунок 3.2) [5].

Рисунок 3.2– Структурная схема построения систем передачи

В отличие от аналоговых систем во временных (цифровых) системах на обслуживаемых и необслуживаемых пунктах устанавливается аппаратура для восстановления (регенерации) импульсных сигналов линейного тракта. Отсюда обслуживаемые и необслуживаемые пункты в этих системах принято называть регенерационными (ОРП, НРП).

Поясним, для чего нужны усилительные и регенерационные пункты [4]. Дальность передачи сигналов по физическим цепям (средам) определяется, прежде всего, затуханием (ослаблением) сигнала из-за того, что в цепи теряется часть энергии передаваемого сигнала. Конкретные электрические параметры цепи и чувствительность приемного устройства определяют допустимую дальность связи. Например, при передаче речи мощность сигнала на выходе микрофона телефонного аппарата PПЕР = 1 мВт, а чувствительность телефона приемного аппарата PПР = 0.001 мВт. Таким образом, максимально допустимое затухание цепи не должно быть больше amax=10lg(PПЕР/PПР=10lg(1/0.001)=30 дБ. Зная затухание amax и километрический коэффициент затухания a, можно определить дальности передачи l=amax/a .

В системах передачи применяется способ компенсации затухания сигналов повышением мощности сигнала в нескольких равномерно расположенных точках тракта. Часть канала связи между соседними промежуточными усилителями называется усилительным участком. Изменение уровней сигнала вдоль магистрали описывается диаграммой уровней, приведенной на рисунке 3.3.

Рисунок 3.3 – Диаграмма уровней

где РПЕР, РПР – уровни сигнала на передаче и приеме, РПОМ – уровень помехи

Аппаратура ОУП и НУП служит не только для усиления аналогового сигнала, но и для коррекции (выравнивания) амплитудно-частотных и фазочастотных характеристик линейного тракта. Аппаратура НРП и ОРП предназначена для восстановления амплитуды, длительности и временного интервала между импульсами сигнала цифровых систем.

Остаточное затухание канала – рабочее затухание (усиление) канала, определяемое в условиях замыкания входа и выхода канала на активные сопротивления нагрузок, равные номинальным значениям входного и выходного сопротивлений канала как четырёхполюсника. При согласовании всех элементов, образующих канал передачи, по входным сопротивлениям остаточное затухание можно определить как разность суммы затуханий и суммы усилений в канале:

, дБ

Остаточное затухание канала ТЧ составляет 7 дБ. Максимальное отклонение во времени на одном транзитном участке не должно превышать 2.2 дБ с вероятностью 0,95.

Практикум на применение понятия: Остаточное затухание канала.

Задача: Найти остаточное затухание в канале, содержащем три усилительных участка: l1=10км, l2=5км, l3=4км; затухание в кабеле α=0,3дБ/км; коэффициенты передачи (усиления): К1=4дБ; К2=0,3; К3=10дБ; К4=15дБ.

В представленной задаче неизвестной величиной остается только конкретные величины потерь (затухание) каждого усилительного участка, которые можно определить по формуле:

а(дБ)=l(км) * α(дБ\км)

Далее воспользуйтесь основной формулой, представленной выше.

Эффективно передаваемая полоса частот канала ТЧ – полоса, на крайних частотах которой (0.3 и 3.4 кГц) остаточное затухание на 8.7 дБ превышает остаточное затухание на частоте 800 Гц. Частотная характеристика отклонения канала ТЧ от номинала 7 дБ должна оставаться в пределах шаблона (рисунок 3.4) при максимальном числе транзитов, т.е. при 12 переприемных участках.

Рисунок 3.4 – Шаблон отклонения остаточного затухания аналогового канала ТЧ

Фазочастотные искажения не являются столь существенным при передаче речи. Но так как каналы ТЧ используются также для передачи данных и факсимильной связи, большие фазочастотные искажения недопустимы. Поэтому нормируется отклонение группового времени передачи (ГВП) от его значении на частоте 1900 Гц на одном транзитном участке длиной 2500 км (рисунок 3.5).

Рисунок 3.5 – Допустимые отклонения ГВП канала ТЧ

Коэффициент нелинейных искажений канала ТЧ на одном транзитном участке не должен превышать 1.5% (1% по третьей гармонике) при номинальном уровне передачи тока частотой 800 Гц. Амплитудная характеристика при этом нормируется следующим образом: остаточное затухание канала на одном транзитном участке должно оставаться постоянным с точностью 0.3 дБ при изменении уровня измерительного сигнала от минус 17.5 дБ до плюс 3.5 дБ в точке с нулевым измерительным уровнем на любой частоте пределах 0.3… 3.4 кГц. При повышении уровня измерительного сигнала до 8.7 и 20 дБ остаточное затухание должно уменьшиться не менее чем на 1.75 и 7.8 дБ соответственно.

Помехи в каналах ТЧ. На выходе канала ТЧ кроме информационного сигнала присутствуют помехи, которые определяются на приемном конце в точке с относительным уровнем –7 дБ. Средняя величина псофометрического (взвешенного) напряжения помех в канале в течение любого часа на одном переприемном участке длиной 2500 км не должна превышать 1.1 мВ псоф. (10000 пВт псоф. В точке относительного нулевого уровня).

Стандартные каналы ТЧ, организованные с помощью цифровых и оптических систем передачи, являются более высококачественными. Поэтому ряд характеристик цифровых каналов ТЧ имеют следующие отличия:

Нормы на амплитудно-частотные искажения заданы МСЭ-Т в виде шаблона (рисунок 3.6). Если сравнить допустимые отклонения остаточных затуханий цифровых и аналоговых каналов ТЧ, можно отметить, что нормы для цифровых каналов более жесткие. То же можно сказать и о фазочастотных искажениях (рисунок 3.7).

Рисунок 3.6 – Шаблон отклонений остаточного затухания цифрового канала ТЧ

Рисунок 3.7 – Шаблон на допустимую неравномерность ГВП цифрового канала ТЧ

Для цифровых каналов ТЧ вводится дополнительная характеристика, которая оценивает шумы квантования. Эта характеристика задается в виде зависимости отношения сигнал-шум (ОСШ) от уровня сигнала (рисунок 3.8).

Рисунок 3.8 – Зависимость отношения сигнал/шум квантования от уровня сигнала

Широкополосные каналы. Современные системы передачи позволяют организовать каналы с более высокой, чем канал ТЧ пропускной способностью. Увеличение пропускной способности достигается расширением эффективно передаваемой полосы частот (ЭППЧ), причем широкополосные каналы образуются объединением определённого количества каналов ТЧ.

Рабочие полосы частот сетевых трактов и каналов приведены в таблице 3.2. Полосы частот широкополосных каналов несколько уже за счёт полосовых фильтров КФО: внутри рабочих полос имеются области "всплесков" затухания и фазы из-за содержания в КОТ и КФО заграждающих фильтров на частотах контрольных сигналов.

Таблица 3.2 – Рабочие полосы частот сетевых трактов и каналов