Фон-неймановская архитектура

Принцип действия компьютера

Принцип адресности

 

Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек – адреса.

 

 

Основное отличие персонального компьютера от больших машин, или так называемых мейнфреймов, состоит в том, что он позволяет одновременно использовать его ресурсы только одному пользователю. Он может выполнять одновременно несколько программ: обработки, вывода результатов, загрузки, поиска информации в сети и т.д. Кроме того, многие персональные машины используются в качестве серверов в сети, и их ресурсами (т.е. аппаратными и программными средствами) могут пользоваться несколько пользователей одновременно.

Структура самого компьютера за все время существования машин изменилась незначительно. Она по-прежнему строится на основе модели фон Неймана – ее основная память состоит из отдельных ячеек с последовательными номерами (или «адресами»), в которых могут храниться как коды отдельных команд (программа), так и данных. Однако технологический прогресс привел к объединению нескольких узлов и устройств в одной микросхеме.

Типичная фон-неймановская ВМ (рис. 1.3) содержит: память, устройство управления, арифметико-логическое устройство и устройство ввода/вывода.

 

Рис. 1.3. Структура фон-неймановской вычислительной машины

 

В любой ВМ имеются средства для ввода программ и данных к ним. Информация поступает из подсоединенных к ЭВМ периферийных устройств (ПУ) ввода. Результаты вычислений выводятся на периферийные устройства вывода. Связь и взаимодействие ВМ и ПУ обеспечивают порты ввода и порты вывода. Термином порт обозначают аппаратуру сопряжения периферийного устройства с ВМ и управления им. Совокупность портов ввода и вывода называют устройством ввода/вывода (УВВ) или модулем ввода/вывода ВМ (МВБ).

Введенная информация сначала запоминается в основной памяти, а затем переносится во вторичную память, для длительного хранения. Чтобы программа могла выполняться, команды и данные должны располагаться в основной памяти (ОП), организованной таким образом, что каждое двоичное слово хранится в отдельной ячейке, идентифицируемой адресом, причем соседние ячейки памяти имеют следующие по порядку адреса. Доступ к любым ячейкам запоминающего устройства (ЗУ) основной памяти может производиться в произвольной последовательности. Такой вид памяти известен как память с произвольным доступом. Основная память современных вычислительных машин в основном состоит из полупроводниковых оперативных запоминающих устройств (ОЗУ), обеспечивающих как считывание, так и запись информации. Для таких запоминающих характерна энергозависимость – хранимая информация теряется при отключении электропитания. Если необходимо, чтобы часть основной памяти была энергонезависимой, в состав основной памяти включают постоянные запоминающие устройства (ПЗУ), также обеспечивающие произвольный доступ. Хранящаяся в ПЗУ информация может только считываться (но не записываться).

Размер ячейки основной памяти обычно принимается равным 8 двоичным разрядам – байту. Для хранения больших чисел используются 2, 4 или 8 байтов, размещаемых в ячейках с последовательными адресами. В этом случае за адрес числа часто принимается адрес его младшего байта. Так, при хранении 32-разрядного числа в ячейках с адресами 200, 201, 202 и 203 адресом числа будет 200. Такой прием называют адресацией по младшему байту (little endian addressing). Возможен и противоположный подход – по меньшему из адресов располагается старший байт. Этот способ известен как адресация по старшему байту (big endian addressing). Адресация младшему байту характерна для микропроцессоров фирмы Intel и мини-ЭВМ фирмы DEC, а по старшему байту – для микропроцессоров фирмы Motorola и универсальных ЭВМ фирмы IBM. В принципе выбор порядка записи байтов существенен лишь при пересылке данных между вычислительными машинами с различными формами их адресации или при манипуляциях с отдельными байтами числа. В большинстве вычислительных машин предусмотрены специальные инструкции для перехода от одного способа к другому.

Для долговременного хранения больших программ и массивов данных в ВМ обычно имеется дополнительная память, известная как вторичная. Вторичная память энергонезависима и чаще всего реализуется на базе магнитных дисков. Информация в ней хранится в виде специальных программно поддерживаемых объектов – файлов.

Устройство управления (УУ) – часть вычислительной машины, организующая автоматическое выполнение программ (путем реализации функций управления) и обеспечивающая функционирование ВМ как единой системы. Устройство управления вычислительной машины следует рассматривать как совокупность элементов, между которыми происходит пересылка информации, в ходе которой эта информация может подвергаться определенным видам обработки. Пересылка информации между любыми элементами ВМ инициируется своим сигналом управления (СУ), то есть управление вычислительным процессом сводится к выдаче нужного набора сигналов управления в нужной временной последовательности. Цепи СУ показаны на рис. 1.3 полутоновыми линиями. Основной функцией УУ является формирование управляющих сигналов, отвечающих за извлечение команд из памяти в порядке, определяемом программой, и последующее исполнение этих команд. Кроме того, УУ формирует СУ для синхронизации и координации внутренних и внешних устройств ВМ.

Еще одной неотъемлемой частью ВМ является арифметико-логическое устройство (АЛУ). АЛУ обеспечивает арифметическую и логическую обработку двух входных переменных, в результате которой формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям, а также операциям сдвига. Помимо результата операции АЛУ формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в процессе его получения (равенство нулю, знак, четность, перенос, переполнение и т. д.). Флаги могут анализироваться в УУ с целью принятия решения о дальнейшей последовательности выполнения команд программы.

УУ и АЛУ тесно взаимосвязаны и их обычно рассматривают как единое устройство, известное как центральный процессор (ЦП) или просто процессор. Помимо УУ и АЛУ в процессор входит набор регистров общего назначения (РОН), служащих для промежуточного хранения информации в процессе ее обработки.