Второй закон термодинамики.
Исследование изопроцессов. Работа, теплота и внутренняя энергия в изопроцессах.
1) v = const, => Av = 0, ,
(Q = DU + A => Qv = DUv)
2) T = const, , nT = 1, p1v1 = p2v2 = RT = const
, , ,
, , , DUT = 0
DU = cv (T2 – T1) = 0,
Q = DU + A => QT = AT
3) p = const, , np = 0
Получим ещё одну формулу для расчёта теплоты. 1-ое начало термодинамики в энтальпийной форме
dU = TdS – p dv = dQ – p dv,
dU = dQ – p dv – v dp + v dp = dQ – d(pv) + v dp,
dQ = dU + d(pv) – v dp = d(U+pv) – v dp,
dQ = dI – v dp - 1-ое начало термодинамики в энтальпийной форме.
Из этого уравнения для изобарного процесса получим:
dQp = dI => Qp = I2 – I1.
Таким образом, в изобарном процессе теплота может быть вычислена по двум формулам:
и , .
.
4) Адиабатный dQ=0, S=const
, ns = k,
; ;
Из 1-ого начала термодинамики следует:
dQ = dU + dA, dAS = - dUS, AS = - DUS
1-ый закон термодинамики говорит, что невозможно получить работу без подвода энергии, в частности в форме теплоты, из вне, т.е. закон говорит о возможности взаимопревращения работы в теплоту, но не устанавливает особенности превращения теплоты в работу или работы в теплоту. Но работа в теплоту превращается легко и просто, а для превращения теплоты в работу нужны сложные технические устройства, и процесс превращения теплоты в работу всегда сопровождается потерями. С точки зрения физики различие кроется на уровне превращения упорядоченного движения в хаотическое (A®Q) и хаотическое в упорядоченное.
Все процессы в природе подразделяются на самопроизвольные и вынужденные (падение давления в сосуде при разгерметизации, диффузия газов и т.д. – самопроизвольные; нагнетание давления, разделение газов, в общем случае превращение теплоты в работу – вынужденные процессы).
Ранняя формулировка 2-ого закона термодинамики (формулировка Томсона): «Невозможно провести отрицательный (вынужденный) процесс без компенсации его положительным самопроизвольным процессом».
Пример: Таяние снега – вынужденный процесс – сопровождается отдачей тепла от более теплого более холодному (излучение, радиация) - самопроизвольный процесс.
Формулировка: «Каждый вынужденный процесс избегает одиночества и требует сопровождения самопроизвольным процессом».
Известны и другие формулировки 2-ого закона термодинамики:
«Невозможно построить тепловой двигатель, КПД которого превышал бы цикл Карно»;
«Вечный двигатель 2-ого рода невозможен»;
«Энтропия в адиабатически изолированных системах всегда возрастает».
Вечный двигатель 2-ого рода – двигатель, источником теплоты которого является теплота окружающей среды.
С точки зрения 1-ого закона это возможно, но 2-ой закон утверждает, что должно быть два источника теплоты: нагреватель и холодильник.
Цикл Карно:
Только для обратимых процессов:
dQ = T dS, Q1 = T1(S2 – S1), Q2 = T2(S1 – S2).
Для любых процессов (обратимых и необратимых) .
Если подставить Q1 и Q2, то получим
Теорема Карно
КПД обратимого цикла Карно не зависит от состава топлива и определяется температурами нагревателя T1 и холодильника T2.
Все реальные процессы необратимы, т.е.
, .
В то время, как для обратимого:
, .
Произвольный обратимый цикл
Разобьем цикл бесчисленным числом адиабат и образуем бесчисленное количество обратимых циклов Карно. Справедливо следующее равенство:
=>
Из математики известно, что линейный интеграл по замкнутому контуру равен нулю , где dS – полный дифференциал, т.е. её изменение не зависит от пути перехода, а только от начального и конечного состояния.
В необратимых процессах dQ ¹ T dS.
Рассмотрим гипотетический процесс, который состоит из обратимых и необратимых частей. Суммарно процесс является необратимым, тогда , после интегрирования
Клаузиус рассматривал адиабатный процесс в масштабах всей Вселенной (суммарно адиабатный процесс). Он пришёл к выводу , т.е. по Клаузиузсу должна наступить смерть Вселенной.
Энтропия – мера неупорядоченности системы.
Sгаза>Sжидк>Sтв.тел.
По Клаузиусу движение во Вселенной хаотично. Теплота от более нагретых тел к менее нагретым будет излучаться во Вселенную и передаваться другим космическим телам и через большой промежуток времени температура во Вселенной выровняется, но если температура будет одинаковой, то преобразование теплоты в работу невозможно, как следует из теоремы Карно у тепловых двигателей должно быть два источника теплоты (нагреватель и холодильник). Но если температура во Вселенной будет постноянной, то преобразование теплоты в работу станет невозможным. Это состояние называется тепловой смертью Вселенной.
Критика тепловой смерти Вселенной. Если будет конец, значит было начало, а в масштабах бесконечного вселенского времени таких начал и концов должно быть также бесконечное множество. Отсюда согласуется гипотеза пульсирующей Вселенной. С точки зрения статистической физики критику тепловой смерти дал Гольцман. Согласно ему: «Термодинамическое состояние системы – это её наиболее вероятное состояние (флуктуация)», поэтому dS>0 - наиболее вероятный вариант развития Вселенной, но наряду с тем есть процессы флуктуации, когда dS<0, последннее компенсирует первое.
.
(Природа Вселенной не ясна, поэтому считать её адиабатической не стоит).
Третий закон термодинамики (следствие тепловой теоремы Нернста):
По теореме T®0 S®0, абсолютный нуль по шкале Кельвина невозможен.