Гидроэлектрические станции. Общие положения

Гидроэлектрические станции — это высокоэффективные источники электроэнергии. В большинстве случаев гидроэлектростанции представляют собой объекты комплексного назначения, обеспечивающие нужды электроэнергетики и других отраслей народного хозяйства: водного транспорта, водоснабжения, рыбного хозяйства, мелиорации земель и пр.

Гидроэлектрическая станция — это комплекс сооружений и оборудования, посредством которых энергия водотока преобразуется в электрическую энергию. ГЭС состоит из гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание сосредоточенного напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в электрическую энергию.

По напору ГЭС подразделяют на высоконапорные (более 80 м), средненапорные (от 25 до 80 м) и низконапорные (до 25 м). Совокупность гидротехнических сооружений, энергетического и механического оборудования принято называть гидроэнергетической установкой (ГЭУ).

Различают следующие основные типы гидроэнергетических установок:

гидроэлектростанции (ГЭС);

насосные станции (НС);

гидроаккумулирующие электростанции (ГАЭС);

приливные электростанции (ПЭС).

Основными сооружениями ГЭС на равнинной реке являются плотина, создающая водохранилище и сосредоточенный перепад уровней, т.е. напор, и здание ГЭС, в котором размещаются гидравлические турбины, генераторы, электрическое и механическое оборудование. В случае необходимости строятся водосбросные и судоходные сооружения, рыбопропускные сооружения и т.п. Общий вид ГЭС приплотинного типа представлен на рис. 3

Рисунок 3 – Общий вид ГЭС приплотинного типа

 

Вода под действием силы тяжести по водоводам движется из верхнего бьефа в нижний, вращая рабочее колесо турбины. Гидравлическая турбина соединена валом с ротором электрического генератора. Тубина и генератор вместе образуют гидрогенератор. В турбине гидравлическая энергия преобразуется в механическую энергию вращения на валу агрегата, а генератор преобразует эту энергию в электрическую. Возможно создание на реках каскадов ГЭС. В России построены и успешно эксплуатируются Волжский, Камский, Ангарский, Енисейский и другие каскады ГЭС.

Гидроэлектростанции как источник электрической энергии имеют существенные преимущества перед тепловыми и атомными электростанциями. Они лучше приспособлены для автоматизации и требуют меньшего количества эксплуатационного персонала. Показательны следующие средние значения удельной численности персонала станций различного вида на 1 млн кВт установленной мощности, которые составляют: для ГЭС — 300, для ТЭС — 1400, для АЭС — 1800 чел. Но это только на самой станции, а еще нужно добавить трудозатраты на добычу и транспортирование топлива, в итоге требуемая удельная численность персонала на 1 млн кВт для ТЭС (АЭС) в среднем составляет 2500 чел. В России построены и эксплуатируются крупные ГЭС: каскад Волжских ГЭС, каждая мощностью 2530 МВт и менее; Братская ГЭС — 4500 МВт, Красноярская ГЭС — 6000 МВт, Саяно-Шушенская ГЭС — 6400 МВт и много других.

Малые ГЭС(мощностью до 30 МВт). В настоящее время в России, как и во всем мире, большой интерес вызывает возможность создания малых ГЭС. Они могут создаваться в короткие сроки с использованием унифицированных гидроагрегатов и строительных конструкций с высоким уровнем автоматизации систем управления. Экономическая эффективность их использования существенно возрастает при комплексном использовании малых водохранилищ (для восстановления объема водохранилища, рыбоводства, водозабора для систем орошения и водоснабжения и т.п.).

Насосная станцияпредназначена для перекачки воды с низких отметок на высокие и транспортирование воды в удаленные пункты. На насосной станции устанавливаются насосные агрегаты, состоящие из насоса и двигателя. Насосная станция является потребителем электроэнергии. Она используется для водоснабжения тепловых и атомных станций, коммунально-бытового и промышленного водоснабжения, в ирригационных системах, судоходных каналах и т.п.

Гидроаккумулирующая электростанцияпредназначена для перераспределения во времени энергии и мощности в энергосистеме. В часы пониженных нагрузок ГАЭС работает как насосная станция. Она за счет потребляемой энергии перекачивает воду из нижнего бьефа в верхний и создает запасы гидроэнергии благодаря повышенному уровню верхнего бьефа. В часы максимальной нагрузки ГАЭС работает как гидроэлектростанция. Вода из верхнего бьефа пропускается через турбины в нижний бьеф, и ГАЭС вырабатывает и выдает электроэнергию в энергоси стему. В процессе работы ГАЭС потребляет дешевую электроэнергию, а выдает более дорогую в период пика нагрузки (за счет разности тарифов). Заполняя провалы нагрузки в энергосистеме, позволяет работать агрегатам атомных и тепловых станций в наиболее экономичном и безопасном режиме, резко снижая при этом удельный расход топлива на производство 1 кВт·ч электроэнергии в энергосистеме. В настоящее время в России работает Загорская ГАЭС мощностью 1200 МВт, ведется проектирование других ГАЭС. Схема работы ГАЭС показана на рис.4д.

Приливные электростанциисооружаются на побережье морей и океанов со значительными приливно-отливными колебаниями уровня воды. Для этого естественный залив отделяется от моря плотиной и зданием ПЭС. При приливе уровень моря будет выше уровня воды в отделенном от него заливе, а при отливе, наоборот, ниже, чем уровень воды в заливе (рис. 4, г). Перепады этих уровней создают напор, который используется при работе гидротурбин ПЭС.

В некоторых морских заливах приливы достигают 10—12 м, а наибольшие приливы наблюдаются в заливе Фанди (Канада) и достигают 19,6 м. Технические ресурсы приливной энергии России оцениваются в 200—250 млрд кВт·ч в год и в основном сосредоточены у побережья Охотского, Берингова и Белого морей.

 

 

 

Рисунок 4 – Принципиальные схемы создания напора