Антибиотики

Антагонистические взаимоотношения

Антагонистические взаимоотношения проявляются в подавляющем влиянии одного или нескольких членов микробного сообщества другими представителями.

Пассивный (или конкурентный) антагонизм – взаимодействия, при которых разные виды микроорганизмов используют одни и те же питательные вещества. Это конкуренция за пищу и жизненное пространство. В этой борьбе преимущества получают быстрорастущие микроорганизмы, не требовательные к источникам питания.

Активный антагонизм обусловлен выделением бактерицидных веществ. Ими могут быть неспецифические продукты обмена, например, органические кислоты, спирты, аммиак, фенолы и др., вызывающие коагуляцию белков цитоплазмы. Так, молочнокислые бактерии, подкисляя среду, вызывают угнетение гнилостных бактерий. Наиболее резко выпаженные антагонистические взаимоотношения проявляются в форме паразитизма и хищничества, т.е. удовлетворения своих пищевых потребностей за счет жертвы. Хищники умертвляют свою жертву сразу. Например, грибы-хищники рода Dactylarifa специальными ловчими аппаратами сдавливают тело нематод, умертвляя жертву, оплетают ее гифами т питаются за счет убитых животных. Паразиты питаются за счет живого организма, который остается живым в течение более длительного времени. Например, риккетсии, бактериофаги являются клеточными паразитами.

Антибиоз – форма антагонизма, обусловленная продуцированием антибиотиков (греч. anti – против, bios– жизнь), т.е. специфических микробоцидных или микробостатических веществ, избирательно действующих на другие микроорганизмы.

Историческая справка. Термин впервые введен в 1942 г. З.Ваксманом для обозначения химических веществ, продуцируемых микроорганизмами и способных подавлять рост других микроорганизмов. Еще в 1871-72 гг. В.Манассеин и А.Полотебнов наблюдали антагонистическое действие зеленой плесени на гноеродные кокки. В 1886 г. Б.Гозио выделил из Penicillium sp. кислоту, которая позднее была получена в чистом виде (микофеноловая кислота), она угнетала рост Bacillus anthracis (возбудителя сибирской язвы). Продуцентом первого антибиотика пенициллина был штамм микроскопического гриба Penicillium notatum, выделенный английским ученым А. Флемингом в 1928 г. оксфордские биохимики Е.Чейн и Г.Флори в 1941-42 гг. получили из культуральной жидкости этого гриба пенициллин в чистом виде. За это открытие А.Флеминг, Е.Чейн и Г.Флори были удостоены Нобелевской премии. Первый отечественный пенициллин крустозин был получен в 1943 г. З.В. Ермольевой из Prnicillium crustosum. Антибиотик уже в годы великой Отечественной войны получил высокую оценку как средство лечения гнойно-воспалительных процессов. С открытием антибиотиков возникла новая область в биологии – наука об антибиотиках. В настоящее время известны полусинтетические антибиотики, представляющие собой модификации ядер молекул природных антибиотиков, обнаружена также противоопухолевая активность некоторых антибиотиков.

Антибиотикаминазываются специфические вещества, образуемые клеткой в процессе жизнедеятельности, а также их производные и синтетические аналоги, обладающие способностью избирательно подавлять развитие микроорганизмов или задерживать развитие злокачественных новообразований.

Известно более 2000 антибиотиков, из них в клинической практике используются около 50. Антибиотики обладают высокой биологической активностью в отношении чувствительных к ним микроорганизмов. Их действующие концентрации составляют мкг или даже десятые и сотые доли мкг. Антибиотики обычно продуцируются клетками в питательную среду, а оттуда извлекаются химическими методами.

По происхождению антибиотики подразделяются на: 1) продуцируемые актиномицетами (стрептомицин, эритромицин, мономицин, канамицин, нистатин, гентамицин), большинство используемых в медицине антибиотиков, выделено из актиномицетов; 2) продуцируемые грибами,продуцентами более 100 антибиотиков являются микроскопические грибы (пенициллин, цефалоспорины – р. Cephalosporium); 3) продуцируемые бактериями, чаще всего продуценты антибиотиков встречаются среди спорообразующих грибов (грамицидин – Bacillus brevis, полимиксин – Bacillus polymyхa), хотя имеются и среди неспорообразующих бактерий (из молочнокислых бактерий Streptococcus lactis получен и нашел применение в пищевой промышленности антибиотик низин), один и тот же микроорганизм может продуцировать большое количество антибиотиков разного строения (из Bacillus subtilis выделено свыше 70 антибиотиков, из Pseudomonas aeruginosa – более 30); 4) продуцируемые растениями (фитонциды), например, из бессмертника получен антибиотик аренарин, из чеснока – аллицин, из зверобоя – иманин и новоиманин, эти антибиотики применяют в медицине и в растениеводстве для борьбы с возбудителями болезней сельскохозяйственных растений; 5) полученные из тканей животных (к таким антибиотикам относится лизоцим – белок, губительно, действующий на микроорганизмы; лизоцим содержится в слюне, яйцах, сыворотке крови, лейкоцитах, молоке, рыбьем жире. Из молок рыб получен антибиотик экмолин, он обладает антимикробным и антивирусным действием, усиливает эффективность действия других антибиотиков при совместном применении).

По химическому составу наиболее распространенные антибиотики относятся к следующим группам: 1) азотсодержащие гетероциклические соединения, имеющие в своем составе β-лактамное кольцо (пенициллины, цефалоспорины); 2) ароматические соединения, производные диоксиаминофенилпропана (левомицетин, хлорамфеникол); 3) тетрациклины, содержащие четыре конденсированных шестичленных цикла (тетрациклин и его производные); 4) аминогликозидные соединения, в составе которых имеются аминосахара (стрептомицин, мономицин, канамицин, гентамицин); 5) макролиды, содержащие макроциклическое лактонное кольцо, связанное с аминосахарами (эритромицин, олеандомицин); 6) ациклические соединения с несколькими сопряженными двойными связями -(СН=СН)– (полиеновые соединения - нистатин, леворин). Имеются и другие химические группы антибиотиков, которые реже используются качестве химиотерапевтических препаратов.

По механизму антимикробного действия можно выделить антибиотики: угнетающие синтез клеточной стенки бактерий (пенициллины, цефалоспорины); нарушающие функции рибосом и процессы синтеза белков в микробных клетках (макролиды, аминогликозиды, тетрациклины, левомицетин): нарушающие функции цитоплазматической мембраны (полимиксин, нистатин, леворин, грамицидин); нарушающие синтез РНК бактерий (рифампицин); подавляющие репликацию ДНК (новобиоцин). Механизм действия противоопухолевых антибиотиков обусловлен главным образом нарушением метаболизма ДНК и РНК опухолевых клеток.

По антимикробному спектру антибиотики подразделяются на две группы - антибиотики узкого спектра действия и антибиотики широкого спектра действия. К антибиотиками узкого спектра действия относится пенициллины, оказывающие губительное действие только на грамположительные бактерии и кокки, спирохеты. Они неактивен в отношении грамотрицательных бактерий, кислотоустойчивых бактерий, микоплазм, риккетсий, простейших. Антибиотиками широкого спектра действия являются аминогликозиды, они подавляют рост кислотоустойчивых бактерий (туберкулезную палочку), рост многих грамположительных и грамотрицательных бактерий, некоторые действуют на простейших. К антибиотикам широкого спектра действия относятся также тетрациклины.

Многие антибиотики постепенно утратили свою эффективность в связи с возникновением у микроорганизмов устойчивости к ним. Естественная устойчивость обусловлена отсутствием у микроорганизмов "мишени" для действия антибиотиков, т.е. отсутствием у микроорганизмов такого звена в цепи метаболических реакций, которое блокировалось бы под действием антибиотиков. Приобретенная устойчивость может быть обусловлена мутациями в хромосомных генах, контролирующих синтез компонентов клеточной стенки, цитоплазматической мембраны, рибосомальных или транспортных белков. Такого рода мутации делают клетку неуязвимой для антибиотиков.