Равносторонняя гипербола.
Среди класса нелинейных функций, параметры которой без особых затруднений оцениваются МНК, следует назвать хорошо известную в эконометрике равностороннюю гиперболу. Для нее, заменив 1/х на z, получим линейное уравнение регрессии у = а + вz
Гипербола может быть использована не только для характеристики удельных затрат с объемами производства, как уже указывалось ранее. Примером ее использования может служить также взаимосвязь доли расходов на определенные группы товаров (продовольственные, непродовольственные, товары длительного пользования) с общей суммой доходов. Подобного рода взаимосвязи получили название кривых Энгеля. В 1857 году немецкий статистик Энгель сформулировал закономерность – с ростом дохода доля затрат на продовольствие уменьшается. Соответственно, возрастает доля расходов на непродовольственные товары.
Степенная функция.
Рассмотрим далее функции вида у = aх b , которые являются нелинейными как по параметрам, так и по переменным. Данное соотношение может быть преобразовано в линейное уравнение путем использования логарифмов, знакомых вам из курса математики. Ниже приведем основные свойства логарифмов, которые помогут вам в преобразованиях нелинейных уравнений.
Основные правила гласят :
1. Если у = х z , то log y = log x + log z .
2. Если y = x / z , то log y = log x - log z.
3. Если y = x n, то log y = n log x.
Эти правила могут применяться вместе для преобразования более сложных выражений. Например, если у = a х b , то по правилу 1 : log y = log a + log x b и по правилу 3 = log a + b log x.
Если обозначить у1 = log (y) , z = log x и a 1 = log a , то уравнение можно переписать в следующем виде: у 1 = a1 + b z
Процедура оценивания регрессии теперь будет следующей. Сначала вычислим у 1 и z для каждого наблюдения путем взятия логарифмов от исходных значений. Вы можете сделать это на компьютере с помощью имеющейся статистической программы. Затем оценим регрессионную зависимость у1 от z. Коэффициент при z будет представлять собой непосредственную оценку b. Постоянный член является оценкой a1, то есть log a. Для получения оценки a необходимо взять антилогарифм, то есть выполнить обратное действие.