Работа комплекта термопара-милливольтметр. Погрешности, возникающие в процессе измерений. Устройство компенсационной коробки.

Комплект для измерения температуры состоит из термоэлектродов 1 и 2, образующих рабочий конец 3, которые изолированы друг от друга фарфоровыми трубками 4 и заключены в защитный чехол 5. В головке 6 оба термоэлектрода посредством зажимов, укрепленных на колодке 7, соединены с жилами 8 и 9 компенсационного провода, к которому посредством медных соединительных проводов 10 подключен в точках 11 и 12, являющихся свободными концами термопары, измерительный прибор 13. Постоянная температура свободных концов поддерживается термостатом 14.

Принцип работы милливольтметра заключается в использовании взаимодействия магнитного поля неподвижного магнита и постоянного тока, протекающего через обмотку подвижной рамки. Рамка Rр включается в цепь ТЭП с помощью компенсационных А1 и В1, и медных С проводов. Сила тока, протекающего в цепи, зависит от величины ТЭДС ЕАВ(t2 , t0) и сопротивления измерительной цепи. При протекании тока через рамку, окруженную полем постоянного магнита, возникает магнитоэлектрический момент М (Н·м), поворачивающий рамку и равный: М = 2r l·n·B·I, При перемещении рамка одновременно закручивает спиральные пружины, которые создают противодействующий упругий момент. Вращение рамки будет продолжаться до тех пор, пока магнитоэлектрический момент не уравновесится противодействующим упругим моментом М = Мп

Погрешности:

1) сопротивления внешней цепи RВН в зависимости от непостоянной температуры в цехах и на поверхностях металлургического оборудования, вдоль которые прокладываются соединительные провода;

2) сопротивления прибора RГ вследствие значительного изменения температуры помещения, в котором установлен прибор;

3) температуры t0 свободных концов ТП;

4) механических характеристик измерительного механизма (упругих характеристик пружин, моментов трения в керновых подпятниках и т. п.);

5) наличия внешних магнитных полей.

Для исключения влияния отклонения температуры t0 свободных концов от градуировочной вместо термостатов широко применяются компенсационные коробки КТ для автоматической компенсации изменения ТЭДС термопары. На рис. 3.4. представлена схема включения устройства КТ в измерительную цепь, состоящую из милливольтметра М и термометра АВ. Компенсационные А1, В1 и соединительные С провода присоединены к клеммам КТ. Таким образом, сопротивления R1, R2, R3, R4 образующие равноплечный мост, имеют такую же температуру t0, которую имеют свободные концы. Сопротивления R1, R2 и R4, выполнены из манганина, R3– из меди. К вершинам диагонали ab подается постоянное напряжение, например от источника стабилизированного питания (на рисунке не показан). Сопротивления подобраны таким образом, что при t0=0 °С напряжение на вершинах с и d равно нулю, т. е. на милливольтметр поступает сигнал ТП, соответствующий стандартной градуировке. При увеличении температуры t0 (t'0 > t0) возрастает сопротивление R3, что приводит к нарушению равно-весия моста и появлению в точках c и d напряжения, компенсирующего уменьшение ТЭДС термометра, ЕАВ (t′0, t0) = Ucd. Точность, с которой устройство КТ воспроизводит соответствующую термоэлектрическую характеристику при изменении температуры свободных концов в пределах до t0 = 50 °С, составляет ±3 °С для ТП типа ТПП, ТХА и ТХК.

  1. Компенсационный метод измерения температуры. Устройство и работа автоматических потенциометров.
  2. Компенсационный метод измерения температуры. Работа и устройство потенциометров с ручной наводкой.

Измерение термо-ЭДС компенсационным путем

Измерение термо-ЭДС термопары прямым путем, по силе тока в цепи постоянного сопротивления, с помощью милливольтметра, можно осуществить сравнительно просто. Однако этот метод обладает рядом недостатков, создающих дополнительные погрешности, что в большинстве случаев не позволяет получить высокой точности измерения.

В измерительной технике кроме прямых методов измерения известны компенсационные метода или методы противопоставления (сравнения) неизвестной величины величине известной. Компенсационные методы позволяют провести измерения более точно, хотя и не всегда так просто, как прямое измерение.

Основное преимущество компенсационного измерения термо-ЭДС, по сравнению с прямым, с помощью милливольтметра, состоит в том, что в момент измерения ток в цепи термопары равен 0. Это означает, что величина сопротивления внешней цепи не имеет значения: никакой подгонки сопротивления внешней цепи делать не надо и беспокоиться о влиянии температуры окружающей среды на внешнюю цепь нет необходимости.

  1. Классификация термометров сопротивления, физическая сущность работы, достоинства и недостатки. Вторичные приборы.

Термометр сопротивления (Терморезистор) — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. В последнем случае называется термистором.

Преимущества термометров сопротивления

Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,001 °C.

Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений

Практически линейная характеристика

Недостатки термометров сопротивления

Малый диапазон измерений (по сравнению с термопарами)

Не могут измерять высокую температуру (по сравнению с термопарами))

Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространенный тип термометров сопротивления – платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °С (класс АА при 0 °С). Термометры сопротивления на основе напыленной на подложку пленки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °С (класс С), для пленочных 600 °С (класс С).