Вложение кольца целых чисел в поле рациональных.

Договоримся обозначать поле рациональных чисел через .

Теорема 4.Кольцо изоморфно вкладывается в поле рациональных чисел .

Доказательство.

Рассмотрим множество . Нетрудно устанавливается, что подполе поля , проверим только замкнутость.

замкнуто относительно сложения и умножения (?)

;

.

Рассмотрим соответствиезаданное по правилу .

Докажем, что - кольцевой изоморфизм.

- отображение (?)

Всюду определенность очевидна, поскольку для каждого целого числа можно построить класс .

Однозначность:(?)

- биекция (?)

Инъективность: (?)

.

Сюръективность: (?)

Возьмем , поскольку . В силу произвольности сюръективность доказана.

- гомоморфизм (?)

Сохранение операции сложения: (?)

.

Сохранение операции умножения: (?)

Таким образом доказано, что алгебра изоморфна подалгебре алгебры , следовательно, изоморфно вкладывается в .

что и требовалось доказать.

 

Замечание. Ввиду изоморфизма, который отмечен в конце доказательства, мы проведем отождествление для каждого целого числа. Ввиду этого отождествления получим (подмножество, более того, подкольцо).