Виды и схемы отбора
Понятие и причины использования выборочного метода
ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ
Выборочное наблюдение – способ несплошного наблюдения, при котором обследуется не вся совокупность, а лишь часть ее, отобранная по определенным правилам выборки и обеспечивающая получение данных, характеризующих всю совокупность в целом.
Причины использования выборочного метода:
1. Повышение точности данных. Уменьшение числа единиц наблюдения в выборке резко снижает ошибки регистрации, но увеличивает ошибку репрезентативности. Однако качество данных можно повысить, привлекая более квалифицированных исполнителей.
2. Экономия материальных, трудовых, финансовых ресурсов и времени.
3. Порча наблюдаемых объектов. Например, изучение качества продукции: проверка молока на жирность, электрических ламп на длительность горения.
Размер ошибки выборки и методы ее определения зависят от вида и схемы отбора.
Различают четыре вида отбора совокупности единиц наблюдения:
1. случайный;
2. механический;
3. типический;
4. серийный (гнездовой).
Случайный отбор. В случайном порядке отбирается необходимое количество единиц совокупности. Каждая из единиц имеет одинаковую вероятность попасть в выборку. Наиболее распространенный вид отбора.
Пример 7.1. Тиражи выигрышей: из общего количества выпущенных билетов в случайном порядке наугад отбирается определенная часть номеров, на которые приходятся выигрыши. При этом всем номерам обеспечивается равная возможность попасть в выборку.
Механический отбор. Все единицы изучаемой совокупности предварительно располагаются в определенном порядке – например, по алфавиту, местоположению и т. п., а потом, в зависимости от объема выборки, механически, через определенный интервал, отбирается необходимое количество единиц.
Пример 7.2. 10%-ная механическая выборка студентов. Составляется список их фамилий по алфавиту и механически отбирается каждый десятый студент, например: 1-й, 11-й, 21-й, 31-й или 7-й, 17-й, 27-й, 37-й и т. д. Если выборка 5%-ная, то отбирается каждый 20-й студент, т.е. интервал зависит от объема выборки. Чем меньше выборка, тем больше интервал.
Типический отбор. Изучаемая совокупность разбивается по существенному, типическому признаку на качественно однородные, однотипные группы. Затем из каждой группы случайным способом отбирается количество единиц, пропорциональное удельному весу группы во всей совокупности.
Пример 7.3. Типический отбор 1500 студентов из 10000, обучающихся на четырех факультетах института. Для этого их группируют в однородные группы по факультетам, а затем по каждой из них отбирают число студентов пропорционально удельному весу числа студентов института по факультетам.
Типический отбор дает более точные результаты, чем случайный или механический, потому что при нем в выборку в такой же пропорции, как и в генеральной совокупности, попадают представители всех типических групп.
Серийный (гнездовой) отбор. Отбору подлежат не отдельные единицы совокупности, а целые группы (серии, гнезда), отобранные случайным или механическим способом. В каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.
Пример 7.4. 10 тыс. студентов института занимаются группами по 25 человек. Для проведения 15%-ного выборочного наблюдения серийным (гнездовым) способом необходимо в случайном порядке отобрать 60 групп (1500/25 = 60) из 400 (10 000/25 = 400) и результаты наблюдения перенести на всю совокупность.
Выборка проводится по схеме повторного или бесповторного отбора.
Повторный отбор. Каждая отобранная единица или серия возвращается во всю совокупность и может вновь попасть в выборку. Так называемая схема возвращенного шара.
Бесповторный отбор. Каждая обследованная единица изымается и не возвращается в совокупность, поэтому она не попадает в повторное обследование. Схема невозвращенного шара.
Бесповторный отбор дает более точные результаты по сравнению с повторным, так как при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.
В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило проводится бесповторный отбор.
Основные характеристики параметров генеральной и выборочной совокупностей обозначаются символами:
Показатели | Генеральная совокупность | Выборочная совокупность |
Объем совокупности | N | n |
Средняя величина | ||
Доля | p | w |
Дисперсия |