Проверка нормальности результатов наблюдений
Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 до 2 %. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.
При числе результатов наблюдений n < 50 нормальность их распределения проверяют при помощи составного критерия.
Критерий 1. Вычисляют отношение
, (4.1)
где S - смещенная оценка среднего квадратического отклонения, вычисляемая по формуле (3.27)
Результаты наблюдений группы можно считать распределенными нормально, если
,
где и - квантили распределения, получаемые из таблицы 4.1 по n, q1/2 и (1 – q1/2), причем q1 - заранее выбранный уровень значимости критерия.
Таблица 4.1 - Статистика d
n | q1/2 ´ 100% | (1-q1/2) ´ 100% | ||
1 % | 5 % | 95 % | 99 % | |
0,9137 | 0,8884 | 0,7236 | 0,6829 | |
0,9001 | 0,8768 | 0,7304 | 0,6950 | |
0,8901 | 0,8686 | 0,7360 | 0,7040 | |
0,8826 | 0,8625 | 0,7404 | 0,7110 | |
0,8769 | 0,8578 | 0,7440 | 0,7167 | |
0,8722 | 0,8540 | 0,7470 | 0,7216 | |
0,8682 | 0,8508 | 0,7496 | 0,7256 | |
0,8648 | 0,8481 | 0,7518 | 0,7291 |
Критерий 2. Можно считать, что результаты наблюдений принадлежат нормальному распределению, если не более m разностей превзошли значение zp/2 Sn, где Sn - оценка среднего квадратического отклонения, вычисляемая по формуле (3.28); zp/2 - верхний квантиль распределения нормированной функции Лапласа, отвечающий вероятности Р/2.
Значения Р определяются из таблицы 4.2 по выбранному уровню значимости q2 и числу результатов наблюдений n.
Таблица 4.2 - Значения Р для вычисления
n | m | q2 ´ 100 % | ||
1 % | 2 % | 5 % | ||
0,98 | 0,98 | 0,96 | ||
11-14 | 0,99 | 0,98 | 0,97 | |
15-20 | 0,99 | 0,99 | 0,98 | |
21-22 | 0,98 | 0,97 | 0,96 | |
0,98 | 0,98 | 0,96 | ||
24-27 | 0,98 | 0,98 | 0,97 | |
28-32 | 0,99 | 0,98 | 0,97 | |
33-35 | 0,99 | 0,98 | 0,98 | |
36-49 | 0,99 | 0,99 | 0,98 |
При уровне значимости, отличном от предусмотренных в таблицы 4.2, значение Р находят путем линейной интерполяции.
В случае, если при проверке нормальности распределения результатов наблюдений группы для критерия 1 выбран уровень значимости q1, а для критерия 2 - q2, то результирующий уровень значимости составного критерия q ≤ q1 + q2.
В случае, если хотя бы один из критериев не соблюдается, то считают, что распределение результатов наблюдений группы не соответствует нормальному.