Выборочное среднее квадратическое отклонение
Выборочное среднее. Выборочная дисперсия.
Числовые характеристики выборки
В теории вероятностей определили числовые характеристики для случайных величин, с помощью которых можно сравнивать однотипные случайные величины. Аналогично можно определить ряд числовых характеристик и для выборки. Поскольку эти характеристики вычисляются по статистическим данным (по данным, полученным в результате наблюдений), их называют статистическими характеристиками.
Пусть дано статистическое распределение выборки объема :
где - число вариантов.
Определение. Выборочным средним называется среднее арифметическое всех значений выборки:
.
Выборочное среднее можно записать и так: ,
где - частость.
В случае интервального статистического ряда в качестве берут середины интервалов, а - соответствующие им частоты.
Определение. Выборочной дисперсиейназывается среднее арифметическое квадратов отклонений значений выборки от выборочного среднего :
или .
Выборочное среднее квадратическое выборки определяется формулой:
.
Особенность состоит в том, что оно измеряется в тех же единицах, что и данные выборки.
Если объем выборки мал (), то пользуются исправленной выборочной дисперсией:
.
Величина называется исправленным средним квадратическим отклонением.