Модель множеств регрессии.Выбор вида модели и оценка ее параметров.

Модель парной регрессии устанавливает зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+…+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости от вида функции модели делятся на линейные и нелинейные.

Модель множественной линейной регрессии имеет вид:

y i = a0 + a1x i 1 +a2x i 2 +…+ ak x i k + ei (2.1)

- количество наблюдений.

коэффициент регрессии aj показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. aj является нормативным коэффициентом.

Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ уравнения (2.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

(2.2) .

Где У – вектор зависимой переменной размерности п ´ 1, представляющий собой п наблюдений значений .

Х- матрица п наблюдений независимых переменных , размерность матрицы Х равна п ´ (k+1) . Дополнительный факторХ0, состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

К - количество факторов, включенных в модель.

a— подлежащий оцениванию вектор неизвестных параметров размерности (k+1) ´ 1;

— вектор случайных отклонений (возмущений) размерности п ´ 1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных , так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,

Y = ,

X = , ,

a = .

 

Уравнение (2.2) содержит значения неизвестных пара­метров a0,a1,a2,… ,ak

Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрес­сии, в которой вместо истинных значений параметров под­ставлены их оценки (а именно такие регрессии и приме­няются на практике), имеет вид

, (2.3)

где A— вектор оценок параметров; е — вектор «оценен­ных» отклонений регрессии, остатки регрессии е = Y - ХА; —оценка значе­ний Y, равнаяХА.