Понятие и причины гетероскедастичности. Последствия гетероскедастичности. Обнаружение гетероскедастичности.
Гомоскедастичность – постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько «с» центральных значений: , р – число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой – наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 – большая сумма квадратов ошибок, а S2 – меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .
19. Нелинейная регрессия. Нелинейная модель и их линеаризация.
y=f(x) – общий вид. Если в качестве f использовать нелинейную математическую зависимость, то получиться нелинейная модель парной регрессии. Различают 2 класса нелинейных моделей:
1.модели нелинейные относительно фактора, но линейные относительно параметров:
*полиномиальные: у=а0+а1х+а2х2+а3х3+…. Для перехода к линейной функции применяют простую замену переменных (х1=х2, х2=х3), у=а0+а1х+а2х1+а3х2…
*гиперболические: у=а0+а1/х, (х1=1/х); у=а0+а1х1.
1. степенную модель: у=ахв;
2. показательную: у=авх;
3. экспоненциальную: у=кеа+вх.
Модели являются нелинейными как относительно фактора, так и относительно параметра. Для их линеаризации использую процедуру логарифмирования. Таким образом, общая схема оценивания нелинейных моделей следующая:
1,линеаризация функции (простой заменой или логарифмированием);
2,оценка параметров линейной модели МНК;
3,обратный переход к исходному виду модели.
Различают 2 класса нелинейных регрессий:
-регрессии нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;
-регрессии, нелинейные по включенным параметрам.
Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:
Полиномы разных степеней: y=a+bx+cx2+ε, y=a+bx+cx2+dx3+ ε;
Равносторонняя гипербола:
К нелинейным регрессиям по оцениваемым параметрам относятся функции:
Степенная y=axb ε
Показательная y=abx ε
Экспоненциальная у=уa+bx ε
Линеаризация нелинейной модели представляет собой преобразование используемой модели в линейную путем замены переменных на нестепенные.Так, в параболе второй степени у=а0+а1х+а2х2+ ε заменяя переменные х=х1, х2=х2, получим двухфакторное уравнение линейной регрессии: у=а0+а1х1+а2х2+ ε, для оценки параметров Ã используется МНК.