Характеристика моделей с распределенным лагом и моделей авторегрессии

 

Многие экономические процессы имеют временной характер изменения. По­этому в эконометрике рассматриваются так называемые динамические модели.

Эконометрическая модель является динамической, если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени.

Выделяют два основных типа динамических эконометрических моделей.

К моделям 1-го типа относятся модели авторегрессии и модели с распределенным ла­гом, в которых значения переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели 2-го типаучитывают динамическую ин­формацию в неявном виде. В этих моделях присутствуют переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным, и определяются экономическими единицами с уче­том информации, которой они располагают в момент (t-1).

В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии.

При исследовании экономических процессов нередко приходится моделировать ситуации, когда значение результативного признака в момент времени t формируется под воздействием ряда факторов, действовавших в прошлые моменты времени (t-1),(t-2),..(t-k). Например, выручка от реализации и прибыль компании текущего периода зависят от расходов на рекламу или проведенных маркетинговых исследований, сделанных компаний в предшествующие моменты времени.

Величину k, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самых факторных переменных, сдвинутые на один или более моментов времени, - лаговыми переменными.

Основная проблема экономической политики как на макро-, так и на микроуровне это решение обратного типа задач, т.е. задач, определяющих, какое воздействие окажут значения управляемых переменных текущего периода на будущие значения экономических показателей. Например, как повлияют инвестиции в промышленность на валовую добавленную стоимость этой отрасли экономики будущих периодов.

Модели экономических процессов, содержащие не только текущие, но и лаговые значения факторных переменных называются моделями с распределенным лагом.

Например, модель

является моделью с распределенным лагом.

Если на величину зависимой переменной текущего периода (уt) оказывают влияние ее значения в прошлые моменты времени (yt-1, yt-2,…), то эти процессы обычно описываются с помощью моделей авторегрессии. Например,

Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику:

­ оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК и требует специальных статистических методов;

­ приходится решать проблему выбора оптимальной величины лага и определения его структуры;

­ между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому.

Рассмотрим модель с распределенным лагом в ее общем виде:

(7.1)

Коэффициент характеризует среднее абсолютное изменение уt при изменении хt на единицу в момент времени t, без учета воздействия лаговых значений фактора х. Этот коэффициент называют краткосрочным мультипликатором.

В момент (t+1) совокупное воздействие факторной переменной х на результат y составит ( ) условных единиц, в момент (t+2) это воздействие можно охарактеризовать суммой ( ) и т. д.. Полученные таким образом новые коэффициенты называют промежуточными мультипликаторами.

Введем обозначение

Величину b называют долгосрочным мультипликатором. Он показывает абсолютное изменение в долгосрочном периоде t+ результата у под влиянием изменения на единицу фактора х.

Положим

.

Полученные величины называются относительными коэффициентами модели с распределенным лагом.

Очевидно, что если 0< <1 и

В этом случае относительные коэффициенты являются весами для соответствующих коэффициентов j. Каждый из них изменяет долю общего изменения результативного признака в момент времени (t+j). На основе величин можно определить две важные характеристики модели множественной регрессии: величину среднего и медианного лага.

Средний лаг определяется по формуле и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, высокое его значение о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

Медианный лаг - это величина лага, для которого .

Это тот период времени, в течение которого будет реализована половина общего воздействия фактора на результат.

Рассмотрим теперь модель авторегрессии:

(7.2)

Параметров b имеет тот же смысл, что и в модели с распределенным лагом (1).Общее абсолютное изменение результата в момент (t+1) составит , в момент времени (t+2) абсолютное изменение результата составит единиц и т.д.

Долгосрочный мультипликатор в модели авторегрессии рассчитывается как сумма как сумма краткосрочного и промежуточных мультипликаторов: (7.3)

Обычно во всех моделях авторегрессии вводится условие стабильности, состоящее в том, что коэффициент регрессии при переменной по абсолютной величине меньше единицы ( <1).

Следовательно, можно написать:

. (7.4)