Ускорители заряженных частиц
Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и направляются пучки высокоэнергетических заряженных частиц (электронов, протонов, мезонов и т.д.).
Любой ускоритель характеризуется типом ускоряемых частиц, энергией, сообщаемой частицам, разбросом частиц по энергиям и интенсивностью пучка Ускорители делятся на непрерывные (из них частицы вылетают порциями - импульсами). Последние характеризуются длительностью импульса. Но форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные. В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукционных траекториями частиц являются окружности или спирали.
Рассмотрим некоторые типы ускорителей заряженных частиц.
1. Линейный ускоритель. Ускорение частиц осуществляется
электростатическим полем. Заряженная частица проходит поле однократно заряд Q, проходя разность потенциалов , приобретает энергию . Таким способом частицы ускоряются до10МэВ. Их дальнейшее ускорение с помощью источников постоянного напряжения невозможно из-за утечки зарядов, пробоев и т.д.
2. Циклотрон - циклический резонансный ускоритель тяжелых частиц (протонов, ионов). Его принципиальная схема приведена на рис. 41.
Рис. 41 | Между полюсами электромагнита помещается вакуумная камера, в которой находятся два электрода (1 и 2) в виде полых металлических полуцилиндров, или дуантов. К дуантам приложено переменное электрическое поле. Магнитное поле, создаваемое электромагнитом, однородно и перпендикулярно плоскости дуантов. |
Если заряженную частицу ввести в центр зазора между дуантами, то она, ускоряемая электрическим и отклоняемая магнитным полем, войдя в дуант 1, опишет полуокружность, радиус которой пропорционален скорости частицы. К моменту ее выхода из дуанта 1 полярность напряжения изменяется, поэтому частица вновь ускоряется и, переходя в дуант 2, описывает там уже полуокружность большего радиуса и т. д.
Для непрерывного ускорения частицы в циклотроне необходимо выполнить условие синхронизма: периоды вращения частицы в магнитном иоле и колебаний электрического поля должны быть равны. При выполнении этого условия частица будет двигаться по раскручивающейся спирали, получая при каждом прохождении через зазор дополнительную энергию. На последнем витке, когда энергия частиц и радиус орбиты доведены до максимально допустимых значений, пучок частиц посредством отклоняющего электрического поля выводится из циклотрона.
Циклотроны позволяют ускорять протоны до энергии примерно 20МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода вращения, и синхронизм нарушается. Поэтому циклотрон совершенно неприменим для ускорения электронов (при Е=0,5МэВ, m=2m0; при Е=10МэВ, m=28m0).
Ускорение релятивистских частиц в циклических ускорителях можно, однако, осуществить, если применить предложенный в 1944г. советским физиком В.И.Векслером и в 1945г. американским физиком Э.Мак-Милланом принцип автофазировки. Его идея заключается в том, что для компенсации увеличения периода вращения частиц, ведущего к нарушению синхронизма, изменяют либо частоту ускоряющего электрического поля, либо индукцию магнитного поля, либо то и другое. Принцип автофазировки используется в фазотроне, синхротроне и синхрофазотроне.
3.9. Циркуляция вектора для магнитного поля в вакууме
Аналогично циркуляции вектора напряженности электростатического поля введем циркуляцию вектора магнитной индукции. Циркуляцией вектора по заданному замкнутому контуру называется интеграл
,
где - вектор элементарной длины контура, направленной вдоль обхода контура. cosα - составляющая вектора в направлении касательной к контуру, α - угол между векторами и .
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора ) читается так: циркуляция вектора по произвольному замкнутому контуру равна произведению магнитной постоянной μ0 на алгебраическую сумму токов, захватываемых этим контуром:
, (3.18)
где n - число проводников с током, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого вита, ток противоположного на правления считается отри нательным. Например, для системы токов, изображенных на рис. 42,
.
Выражение (3.18) справедливо только для поля в вакууме, поскольку для поля в веществе необходимо учитывать молекулярные токи.
Продемонстрируем справедливость теоремы о циркуляции вектора на примере магнитного поля прямого тока I, перпендикулярного плоскости чертежа и направленного к нам (рис.43).
Рис. 42 Рис. 43
Представим себе замкнутый контур в виде окружности радиуса R. В каждой точке этого контура вектор одинаков по модулю и направлен по касательной к окружности. Следовательно, циркуляция вектора равна
.
Согласно выражению (3.18), получим , откуда
.
Таким образом, исходя из теоремы о циркуляции вектора , получили выражение для магнитной индукции поля прямого тока, выведенное выше см.(3.7).
Сравнивая выражения (1.14) и (3.18) для циркуляции векторов и , видим, что между ними существует принципиальное различие. Циркуляция вектора электростатического поля всегда равна нулю, т.е. электростатическое поле является потенциальным. Циркуляция вектора магнитного поля не равна нулю. Такое поле называется вихревым.
Теорема о циркуляции вектора имеет в учении о магнитном поле такое же значение, как теорема Гаусса в электростатике, т.к. позволяет находить магнитную индукцию поля без применения закона Био-Савара-Лапласа.