Виды горения

О

пламя объемом всего один см с температурой 1200 К при воздействии в течение 15-20 с воспламеняет ее.

Открытое пламя часто является источником большого количества лучистой энергии.

Топочные искры образуются при сжигании топлива. Искры возникают в результате различных причин, обусловленных несовершенством оборудования и организации самого процесса горения. Температура таких искр достаточно высокая - более 1000 К. Искры способны воспламенять

только подготовленные к горению газопаровоздушные смеси, осевшую

i

горючую пыль, пролитые жидкости и т.п.

Фрикционные искры образуются при соударении или трении деталей машин и оборудования, инструментов, твердых предметов и т.п. При этом происходит механическое разрушение поверхности материала и отрыв различных по величине частичек разогретого вещества, чаще всего металла. Высокая начальная температура и скорость окисления этих частичек предопределяет их способность разогреваться во время полета. При соударении стальных деталей с содержанием углерода до 0,8 % максимальная начальная температура обрывающихся частиц не ниже 1600 К. Окисление металлических частичек, как и всякая реакция окисления, происходит с выделением теплоты. При оптимальных соотношениях температуры частицы, скорости движения и скорости образования на ее поверхности оксидной пленки может произойти воспламенение окружающей горючей среды. Большую роль при этом играет продолжительность соприкосновения такой искры с горючей смесыо. Так, например, время существования искр от трения стали о наждачный камень не превышает в среднем одной секунды, а их температура - не выше 870- 970 К. Такие искры не могут воспламенить природный газ, у которого период индукции равен нескольким секундам при самовоспламенении. Если время жизни этих искр увеличить до трех секунд, то природный газ воспламенится.

До недавнего времени считалось, что истирание таких мягких металлов, как медь и алюминий, не может приводить к пожароопасному искрообразованию. Однако оказалось, что они в определенных условиях могут давать опасные искры. И наоборот, многие металлы и сплавы при истирании не дают пожароопасных искр с высокой энергией.

Способность металлов и сплавов к фрикционному искрообразованию обуславливается, в первую очередь, их химической природой, а не твердостью.

Особый характер имеет искрообразование при соударении и трении алюминиевых деталей со стальными поверхностями, покрытыми ржавчиной. В этом случае протекает термитная химическая реакция с выделением большого количества теплоты: Fe203 + FeO = Fe304 - ржавчина 8А1 + 3Fe304 -> 4А1203 + 9Fe + 3340 кДж. (1)

Разряды статического электричества возникают в результате электризации. Электризация - это разделение положительных и отрицательных зарядов. В настоящее время нет единой теории статического электричества, а существует ряд гипотез. Наиболее распространена гипотеза о контактной электризации жидких и твердых веществ. Электризация возникает при трении двух разнородных веществ, обладающих различными атомными и молекулярными силами притяжения на поверхности соприкосновения. По крайней мере одно из них должно быть диэлектриком. При этом происходит перераспределение электронов и ионов вещества, образующих двойной электрический слой с зарядами противоположных знаков.

Пары и газы электризуются только в том случае, если в них присутствуют твердые или жидкие примеси, либо продукты конденсации. Наэлектризованные тела несут заряды статического электричества и оказывают силовое воздействие друг на друга. В окружающем их пространстве образуется электрическое поле, воздействие которого обнаруживается при внесении в него заряженных или нейтральных тел. Основными его параметрами являются напряженность и потенциал отдельных точек. В ряде производств потенциал относительно земли


В газообразных горючих системах все подготовительные и, собственно, процессы горения протекают в пламени. Поэтому для предварительно перемешанных газовых смесей понятия горение и пламя часто отождествляют и используют как синонимы. При горении конденсированных систем (жидких и твердых) подготовительные процессы (нагревание, плавление, испарение, термическое разложение) протекают вне пламени непосредственно на поверхности горящего вещества. Поэтому в зависимости от агрегатного состояния компонентов горючей смеси различают гомогенное и гетерогенное горение.

Гомогенное горение - процесс взаимодействия горючего и окислителя, находящихся в одинаковом агрегатном состоянии. Наиболее широко распространено гомогенное горение газов и паров в воздухе, последние могут быть предварительно перемешаны или же нет.

Гетерогенное горение - процесс взаимодействия горючего и окислителя, находящихся в различных агрегатных состояниях, горение происходит на поверхности раздела фаз (твердое тело-газ, жидкость-газ). При этом конденсированная фаза должна иметь высокую температуру кипения, чтобы при температуре горения практически не происходило ее испарения. Примерами являются горение антрацита, кокса, древесного угля, нелетучих металлов. Часто при гетерогенном горении пламя отсутствует. Беспламенное горение называют тлением. На пожарах гомогенное горение твердых горючих материалов на заключительной стадии после выгорания летучих веществ переходит в гетерогенное догорание карбонизованных остатков (угля).


В процессе горения, как и в любом химическом процессе, можно выделить два этапа: первый - создание молекулярного контакта между окислителем и горючим веществом в результате их смешения (диффузии), второй - взаимодействие молекул с образованием продуктов реакции достигает огромных значений. Например, при фильтрации бензина с асфальтом через шелк - 335 кВ. Токи составляют несколько микроампер.

Разряд статического электричества возникает тогда, когда напряженность электростатического поля над поверхностью диэлектрика или проводника достигает критического, пробивного напряжения. Для воздуха пробивное напряжение составляет ЗТО В/мм. Статическое электричество может вызвать воспламенение при следующих условиях;

- наличии источников статических зарядов;

- накоплении значительных зарядов на контактирующих поверхностях;

- достаточной разности потенциалов для электрического пробоя среды;

- возможности возникновения электрических разрядов.

Статическое электричество может накапливаться на человеке. Заряд может достигать 15 кВ, а энергия разряда - от 2,5 до 7,5 мДж.

Разряды атмосферного электричества - это электрические разряды в атмосфере между отрицательно заряженным облаком и землей. Молния имеет следующие параметры: сила тока - до 100 кА, напряжение - несколько миллионов вольт, температура - до 30 ООО К. Действие молнии - тепловое, силовое и химическое. Длительность разряда - до 0,1 мс, энергия разряда - в среднем 100 МДж. Воздействие молнии обычно двоякое; прямой удар и вторичные проявления (электростатическая индукция). Прямой удар прожигает стальной лист толщиной до 4 мм. Вторичные проявления характеризуются возникновением на больших металлических массах (крыши домов, технологическое оборудование и т.п.) многочисленных искровых разрядов, индуцированных молнией. Энергия их может превышать 250 мДж.

Несмотря на многочисленность источников зажигания, все они по своей природе могут быть разделены на несколько основных видов. Зажигание такими из них, как топочные, фрикционные искры, частички расплавленного металла и т.п. носит тепловую природу и описывается теоретическими представлениями, рассмотренными выше. Электрические
искры имеют свои отличительные особенности, поэтому их необходимо рассмотреть отдельно.