Кабельные линии электропередачи
Кабельная линия (КЛ) - линия для передачи электроэнергии, состоящая из одного или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис 3.12). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесообразно по экономическим, архитектурно-планировочным показателям и другим требованиям.
Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на промышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства и т. п. Достоинства и преимущества кабельных линий по сравнению с воздушными: неподверженность атмосферным воздействиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреждаемость, компактность линии и возможность широкого развития электроснабжения потребителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и в 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.
В состав КЛ входят: кабель, соединительные и концевые муфты, строительные конструкции, элементы крепления и др.
Кабель - готовое заводское изделие, состоящее из изолированных то-копроводящих жил, заключенных в защитную герметичную оболочку и броню, предохраняющих их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5-2000. Жилы сечением до 16 - однопроволочные, свыше -многопроволочные. По форме сечения жилы круглые, сегментные или секторные.
Кабели напряжением до 1 кВ выполняются, как правило, четырех-жильными, напряжением 6-35 кВ - трехжильными, а напряжением 110-220 кВ одножильными.
Защитные оболочки делаются из свинца, алюминия, резины и полихлорвинила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создает более равномерное электрическое поле и улучшает отвод тепла. Выравнивание электрического поля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводящей бумагой.
В кабелях на напряжение 1-35 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывается слой поясной изоляции.
Броня кабеля, выполненная из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной пряжи, пропитанной битумом и покрытой меловым составом.
В кабелях напряжением 110 кВ и выше для повышения электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).
В марке, обозначении кабеля указываются сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжиль-ных кабелей напряжением до 1 кВ сечение четвертой («нулевой») жилы меньше, чем фазной. Например, кабель ВПГ-1-335+125 - кабель с тремя медными жилами сечением по 35и четвертой сечением 25, полиэтиленовой (П) изоляцией на 1 кВ, оболочкой из полихлорвинила (В), небронированный, без наружного покрова, (Г) - для прокладки внутри помещений, в каналах, туннелях, при отсутствии механических воздействий на кабель; кабель АОСБ-35-370 - кабель с тремя алюминиевыми (А) жилами по 70, с изоляцией на 35 кВ, с отдельно освинцованными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом - для прокладки в земляной траншее; ОСБ-35-370 - означает такой же кабель, но с медными жилами.
Конструкции некоторых кабелей представлены на рис. 3.13. На рис. 3.13, а, б даны силовые кабели напряжением до 10 кВ.
Четырехжильный кабель напряжением 380 В (см. рис. 3.13, а) содержит элементы: 1 - токопроводящие фазные жилы; 2 - бумажная фазная и поясная изоляция; 3 - защитная оболочка; 4 - стальная броня; 5 - защитный покров; 6 - бумажный наполнитель; 7 - нулевая жила.
Трехжильный кабель с бумажной изоляцией напряжением 10 кВ (рис. 3.13, б) содержит элементы: 1 - токоведущие жилы; 2 - фазная изоляция; 3 - общая поясная изоляция; 4 - защитная оболочка; 5 - подушка под броней; 6 - стальная броня; 7 - защитный покров; 8 - заполнитель.
Трехжильный кабель напряжением 35 кВ изображен на рис. 3.13, в. В него входят: 1 - круглые токопроводящие жилы; 2 - полупроводящие экраны; 3 - фазная изоляция; 4 - свинцовая оболочка; 5 - подушка; 6 - заполнитель из кабельной пряжи; 7 - стальная броня; 8 - защитный покров.
На рис. 3.13, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110-220 кВ. Давление масла предотвращает появление воздуха и его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6 состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной ленты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании кабеля в трубе. Снаружи стальная труба защищена покровом 5.
Широко распространены кабели в полихлорвиниловой изоляции, производимые трех, четырех и пятижильными (3.13, е) или одножильными (рис. 3.13д).
Кабели изготавливаются отрезками ограниченной длины в зависимости от напряжения и сечения. При прокладке отрезки соединяют посредством соединительных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.
При прокладке в земле кабелей 0,38-10 кВ для защиты от коррозий и механических повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи. На рис. 3.14, апоказано соединение трехжильного низковольтного кабеля 2 в чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены зажимом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битумными составами, кабели 20-35 кВ - маслонаполненными. Применяют и другие конструкции соединительных муфт.
На концах кабелей применяют концевые муфты или концевые заделки. На рис. 3.15, априведена мастиконаполненная трёхфазная муфта наружной установки с фарфоровыми изоляторами для кабелей напряжением 10 кВ. Для трехжильных кабелей с пластмассовой изоляцией применяется концевая муфта, представленная на рис. 3.15, б. Она состоит из термоусаживаемой перчатки 1, стойкой к воздействию окружающей среды, и полупроводящих термоусаживаемых трубок 2, с помощью которых на конце трехжильного кабеля создаются три одножильных кабеля. На отдельные жилы надеваются изоляционные термоусаживаемые трубки 3. На них монтируется нужное количество термоусаживаемых изоляторов 4.
Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних помещениях применяют сухую разделку (рис. 3.15, в). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекрывающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения отставания и разматывания фиксируют бандажами из шпагата 6.
Способ прокладки кабелей определяется условиями трассы линии. Кабели прокладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекторах, по кабельным эстакадам, а также по перекрытиям зданий.
Наиболее часто на территории городов, промышленных предприятий кабели прокладывают в земляных траншеях. Для предотвращения повреждений из-за прогибов на дне траншеи создают мягкую подушку из слоя просеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м; 0,25 м - между кабелями 20-35 кВ. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механических повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает возможность ремонта без вскрытия полотна дороги. Прокладка в траншеях - наименее затратный способ кабельной канализации ЭЭ.
В местах прокладки большого количества кабелей агрессивный грунт и блуждающие токи ограничивают возможность их прокладки в земле. Поэтому совместно с другими подземными коммуникациями используют специальные сооружения: коллекторы, туннели, каналы, блоки и эстакады. Коллектор служит для совместного размещения в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопровода по городским магистралям и на территории крупных предприятий. При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции, применяют прокладку в туннелях. При этом улучшаются условия эксплуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализационных труб большого диаметра, ёмкость туннеля - от 20 до 50 кабелей.
При меньшем числе кабелей применяют кабельные каналы, закрытые землей или выходящие на уровень поверхности земли. Кабельные эстакады и галереи используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно прокладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты
и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам кабели прокладываются по кабельным кронштейнам.
В крупных городах и на больших предприятиях кабели иногда прокладываются в блоках, представляющих собой асбестоцементные трубы, стыки которых заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.
В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.