Контакт электронного и дырочного полупроводников

(р-п-переход)

 

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой – дырочную проводимость, называется электронно-дырочным переходом(или р-п-переходом). Эти переходы имеют большое практическое применение, являясь основой работы многих полупроводниковых приборов. р-п-переход нельзя осуществить просто механическим соединением двух полупроводников. Обычно области различной проводимости создают либо при выращивании кристаллов, либо при соответствующей обработке кристаллов. Например, на кристалл германия п-типа накладывается индиевая «таблетка» (рис. 27, а). Эта система нагревается примерно при 500 °С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содержащий индий, обладает дырочной проводимостью, то на границе закристаллизовавшегося расплава и германия п-типа образуется р-п-переход (рис. 27, б).

Рассмотрим физические процессы, происходящие в р-п-переходе (рис.28). Пусть донорный полупроводник (работа выхода — Ап,уровень Ферми — )приводится в контакт (рис. 28, б) с акцепторным полупроводником (работа выхода — Ар, уровень Ферми – ). Электроны из п-полупроводника, где их концентрация выше, будут диффундировать в р-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении р → п.

Рис. 27

 

В п-полупроводнике из-за ухода электронов вблизи границы остается некомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В р-полупроводнике из-за ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов (рис. 28, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от п-области к р-области, препятствует дальнейшему переходу электронов в направлении п→ р и дырок в направлении р → п. Если концентрации доноров и акцепторов в полупроводниках п- и р-типа одинаковы, то толщины слоев d1, и d2 (рис. 28, в), в которых локализуются неподвижные заряды, равны (d1 = d2).

При определенной толщине p-n-перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис.28, в). В области р-п-перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциального барьера еφ определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Рис. 28 Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную еφ,причем подъем происходит на толщине двойного слоя d.

Толщина d слоя р-п-перехода в полупроводниках составляет примерно 10 –6 – 10 –7 м, а контактная разность потенциалов – десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т е при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).

Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если приложенное к р-п-переходу внешнее электрическое поле направлено от п-полупроводника к р-полупроводнику (рис, 29, а), т.е. совпадает с полем контактного слоя, то оно вызывает движение электронов в п-полупроводнике и дырок в р-полупроводнике от границы р-п-перехода в противоположные стороны. В результате запирающий слой расширится и его сопротивление возрастет. Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным).В этом направлении электрический ток, через р-п-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в р-полупроводнике и дырок в п-полупроводнике).

Если приложенное к р-п-переходу внешнее электрическое поле направлено противоположно полю контактного слоя (рис. 29, б), то оно вызывает движение электронов в п-полупроводнике и дырок в р-полупроводнике к границе р-п-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются. Следовательно в этом направлении электрический ток проходит сквозь р-п-переход в направлении от р-полупроводника к п-полупроводнику; оно называется пропускным (прямым).

Рис. 29

Таким образом, р-п-переход (подобно контакту металла с полупроводником) обладает односторонней (вентильной) проводимостью.

На рис. 30 представлена вольт-амперная характеристика р-п-перехода. Как уже указывалось при пропускном (прямом) напряжении внешнее электрическое поле способствует движению основных носителей тока к границе р-п-перехода (см. рис. 29, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становится большой (правая ветвь на рис. 30). Это направление тока называется прямым.

При запирающем (обратном) напряжении внешнее электрическое поле препятствует движению основных носителей тока к границе р-п-перехода (см. рис. 29, а) и способствует движению неосновных носителей тока, концентрация которых в полупроводниках невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через р-п-переход протекает только небольшой ток (он называется обратным),полностью обусловленный неосновными носителями тока (левая ветвь рис. 30). Быстрое возрастание – этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока р-п-переходы действуют как выпрямители.

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, переход, то его действие аналогично действию двухэлектродной лампы – диода (см. § 105). Поэтому полупроводниковое устройство, содержащее один р-п-переход, называется полупроводниковым (кристаллическим) диодом.Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.

 

Рис. 30