Соотношение неопределенностей, его физическая и методологическая интерпретация

В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс.

В квантовой механике нельзя говорить о движении микрочастицы по определенной траектории и неправомерно говорить об одновременных точных значениях ее координаты и импульса. Это следует из корпускулярно-волнового дуализма. Так, понятие «длина волны в данной точке» лишено физического смысла, а поскольку импульс выражается через длину волны (см. (213.1)), то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.

В. Гейзенберг, пришел к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Т.е. согласно соотношению неопределенностей Гейзенберга,микрочастица (микрообъект) не может иметь одновременно и определенную координату (х, у, z), и определенную соответствующую проекцию импульса х, ру, рz), причем неопределенности этих величин удовлетворяют условиям

(1)

т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.

Из соотношения неопределенностей (1) следует, что, например, если микрочастица находится в состоянии с точным значением координаты (Δx = 0), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (Δрх→∞), и наоборот. Таким образом, для микрочастиц не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта.

Поясним, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Пусть поток электронов проходит через узкую щель шириной Δх, расположенную перпендикулярно направлению их движения (рис. 1). Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля λ электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране (Э), характеризуется главным максимумом, расположенным симметрично оси Y, и побочными максимумами но обе стороны от главного (их не рассматриваем, так как основная доля интенсивности приходится на главный максимум).

До прохождения через щель электроны двигались вдоль оси Y, поэтому составляющая импульса рx = 0, так что Δрx, = 0, а координата х частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси X определяется с точностью до ширины щели, т. е. с точностью Δх. В этот же момент вследствие дифракции электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2φ (φ – угол, соответствующий первому дифракционному минимуму) . Следовательно, появляется неопределенность в значении составляющей импульса вдоль оси X, которая, как следует из рис. 1 и формулы (1), равна

 
 

(2)

Рис. 1

 

Для простоты ограничимся рассмотрением только тех электронов, которые попадают на экран впределах главного максимума. Из теории дифракции известно, что первый минимум соответствует углу φ, удовлетворяющему условию

Δx sinφ = λ. (3)

Где Δx – ширина щели, а λ – длина волны де Бройля. Из формул (2) и (3) получим

ΔxΔpx = h,

учитывая, что для некоторой, хотя и незначительной, части электронов попадающих за пределы главного максимума, величина Δpxр sinφ. Следовательно, получаем выражение

 

ΔxΔpxh,

 

т.е. соотношение неопределенностей (1).

Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (215.1) в виде

 

Δx Δυxh / m. (4)

Из этого выражения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой 10-12 кг и линейными размерами 10-6 м, координата которой определена с точностью до 0,01 ее размеров (Δx = 10-8 м), неопределенность скорости, по (4),

Δυx = 6,62·10-34 /(10-8·10-12)м/с = 6,62·10-14 м/с,

т. е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться. Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координата и скорость макротел могут быть одновременно измерены достаточно точно. Это же означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Применим соотношение неопределенностей к электрону, движущемуся в атоме водорода. Допустим, что неопределенность координаты электрона Δx ≈ 10-10 м (порядка размеров самого атома, т. е. можно считать, что электрон принадлежит данному атому). Тогда, согласно (4), Δυx=6,62·10-34 /(9,11·10-31·10-10) = 7,27·106 м/с. Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса ≈ 0,5·10-10 м его скорость ≈ 2,3·106 м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электрона в атоме по определенной траектории, иными словами, для описания движения электрона в атоме нельзя пользоваться законами классической физики.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t,т. е. неопределенности этих величин удовлетворяют условию

ΔEΔth. (215.5)

Подчеркнем, что ΔЕ — неопределенность энергии системы в момент ее измерения, Δt – неопределенность длительности процесса измерения. Следовательно, система, имеющая среднее время жизни Δt, не может быть охарактеризована определенным значением энергии; разброс энергии ΔЕ = h /Δt возрастает с уменьшением среднего времени жизни. Из выражения (215.5) следует, что частота излученного фотона также должна иметь неопределенность Δν = ΔЕ/h, т.е. линии спектра должны характеризоваться частотой, равной ν ± ΔЕ/h,. Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.