Прямая линия
Способы графического задания прямой линии
Для определения положения прямой в пространстве существуют следующие методы:
1.Двумя точками (А и В).
Рис. 6. Определение положения прямой по двум точкам
Рассмотрим две точки в пространстве А и В (рис.6). Через эти точки можно провести прямую линию получим отрезок [AB]. Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: [A1B1]<[AB]; [A2B2]<[AB]; [A3B3]<[AB].
2. Двумя плоскостями (a; b).
Этот способ задания определяется тем, что две непараллельные плоскости пересекаются в пространстве по прямой линии.
Рис. 7. Определение положения прямой в пространстве по двум проекциям отрезка
3. Двумя проекциями.
Пусть в плоскостях П1 и П2 даны проекции прямых заданных отрезками [А1В1] и [A2B2]. Проведем через эти прямые плоскости a и b перпендикулярные плоскостям проекций. В том случае если эти плоскости непараллельные (рис.7), линией их пересечения будет прямая заданная отрезком [АВ], проекциями которой являются отрезки [А1В1] и [А2В2].
Рисунок 8. Определение положения прямой по точке и углам наклона к плоскостям проекций
4. Точкой и углами наклона к плоскостям проекций.
Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве (рис.8).