Точка в ортогональной системе трех плоскостей проекций
ТОЧКА
В практике изображения различных геометрических объектов, чтобы сделать проекционный чертеж более ясным, возникает необходимость использовать третью профильную плоскость проекций П3, расположенную перпендикулярно к П1 и П2.
Рис. 3 Точка в системе трех плоскостей.
Модель трех плоскостей проекций показана на рис.3. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной.
Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3.
Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.
Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.
Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 3, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.
Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).
Октант | I | II | III | IV | V | VI | VII | VIII |
x | + | + | + | + | - | - | - | - |
y | + | - | - | + | + | - | - | + |
z | + | + | - | - | + | + | - | - |