Оценка качества нелинейных уравнений регрессии

1. По результатам проведения исследования торговых точек было построено уравнение нелинейной регрессии , где y – спрос на продукцию, ед.; x – цена продукции, руб. Если фактическое значение t-критерия Стьюдента составляет –2,05, а критические значения для данного количества степеней свободы равны , , , то …

    при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8
      при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8
      эластичность спроса по цене составляет –0,8
      при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8

Решение
Для проверки значимости коэффициентов нелинейной регрессии, после линеаризации, как и для уравнения парной линейной регрессии, применяется стандартный алгоритм критерия Стьюдента. Для b формулируется нулевая гипотеза при альтернативной гипотезе . Затем рассчитывается фактическое значение t-статистики, которое сравнивается с критическим значением Стьюдента для требуемого числа степеней свободы и уровня значимости. Если , коэффициент значим; если , коэффициент незначим. В нашем случае при уровне значимости коэффициент значим, а при уровнях значимости и незначим.

Бывшев В.А. Эконометрика : учеб. пособие / В.А. Бывшев. – М. : Финансы и статистика, 2008. – С.331–346.

 

2. Известно, что общая сумма квадратов отклонений , а остаточная сумма квадратов отклонений, .

Тогда значение коэффициента детерминации равно …

    0,8
      0,2
     
     

Решение
Для расчета коэффициента детерминации можно пользоваться следующей формулой: . Значит, в нашем случае коэффициент детерминации равен:

Эконометрика : учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М. : Финансы и статистика, 2005. – С. 137.

 


 

3. Для регрессионной модели , где – нелинейная функция, – рассчитанное по модели значение переменной , получено значение индекса корреляции R = 0,64. Моделью объяснена часть дисперсии переменной , равная …

   
     
     
     

Решение
Величина, характеризующая долю дисперсии зависимой переменной, объясненную независимой переменной (построенным нелинейным уравнением регрессии), называется индексом (коэффициентом) детерминации – R2. Значения индекса детерминации R2 и индекса корреляции R для нелинейных регрессионных моделей связаны соотношением . Следовательно, значение .

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М. : Финансы и статистика, 2005. – С. 99.

 


 

4. Величина называется …

    случайной составляющей
      оценкой параметра
      значением параметра
      переменной

Решение
Величина называется случайной составляющей, или возмущением, и включает в себя влияние факторов, неучтенных в модели, ошибок выборки и ошибок измерения.

Эконометрика : учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 44.

 

 


 

5. Для регрессионной модели вида , где рассчитаны дисперсии: ; ; . Тогда величина характеризует долю …

    остаточной дисперсии
      коэффициента детерминации
      коэффициента корреляции
      объясненной дисперсии

Решение
Значение коэффициента детерминации характеризует долю дисперсии зависимой переменной, объясненную построенным уравнением регрессии, в общей дисперсии зависимой переменной. Разность характеризует долю остаточной дисперсии, которая может быть рассчитана также по формуле . Поэтому отношение характеризует долю остаточной дисперсии.

 

 


 

6. Если общая сумма квадратов отклонений , и остаточная сумма квадратов отклонений , то сумма квадратов отклонений, объясненная регрессией, равна …

   
     
     
      0,25

Решение
Общая сумма квадратов отклонений складывается из суммы квадратов отклонений, объясненных регрессией, и остаточной сумма квадратов отклонений.

Значит, сумма квадратов отклонений, объясненная регрессией, равна разности общей сумме квадратов отклонений и остаточной суммы квадратов отклонений.

Получается .

Эконометрика : учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М. : Финансы и статистика, 2005. – С. 137.

 


 

7. По 20 регионам страны изучалась зависимость уровня безработицы y (%) от индекса потребительских цен x(% к предыдущему году) и построено уравнение в логарифмах исходных показателей: . Коэффициент корреляции между логарифмами исходных показателей составил . Коэффициент детерминации для модели в исходных показателях равен …

    0,64
      0,8
     
     

Решение
Коэффициент детерминации для модели в исходных показателях в данном случае будет равен коэффициенту детерминации для модели в логарифмах исходных показателей, который вычисляется как квадрат коэффициента корреляции, то есть 0,64.

Бывшев В.А. Эконометрика : учеб. пособие / В.А. Бывшев. – М. : Финансы и статистика, 2008. – С.331–346.

 

 


 

8. Известно, что доля остаточной регрессии в общей составила 0,19. Тогда значение коэффициента корреляции равно …

    0,9
      0,19
      0,81
      0,95

Решение
Известно, что доля остаточной регрессии в общей составила 0,19. Значит, Найдем коэффициент детерминации: Вычислим коэффициент корреляции:

Эконометрика : учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М. : Финансы и статистика, 2005. – С. 137.

 


 

9. Для регрессионной модели , где – нелинейная функция, – рассчитанное по модели значение переменной , получены значения дисперсий: . Не объяснена моделью часть дисперсии переменной , равная …

    0,096
      0,904
      0,106
      10,4

Решение
Значение индекса детерминации R2 характеризует долю дисперсии зависимой переменной, объясненную независимой переменной (построенным нелинейным уравнением регрессии). Разность (1-R2) характеризует долю дисперсии зависимой переменной, необъясненную уравнением, эту величину и необходимо определить в задании. Воспользуемся формулой для расчета R2: . Следовательно, разность . Таким образом, часть дисперсии переменной , необъясненная моделью, равна 0,096. Можно также рассчитать это значение через отношение .

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М. : Финансы и статистика, 2005. – С. 99.

 

10. При расчете уравнения нелинейной регрессии , где y – спрос на продукцию, ед.; x – цена продукции, руб., выяснилось, что доля остаточной дисперсии в общей меньше 20%. Коэффициент детерминации для данной модели попадает в отрезок минимальной длины …

    [0,8; 1]
      [0,2; 1]
      [0; 0,2]
      [0; 0,8]

Решение
Доля остаточной дисперсии в общей меньше 20%, значит, доля объясненной регрессии в общей больше 80%, другими словами, коэффициент детерминации больше 0,8. Поскольку коэффициент детерминации может принимать значения только в интервале [0, 1], то отрезком минимальной длины, в который попадает коэффициент детерминации для данной модели, будет отрезок [0,8; 1].

Бывшев В.А. Эконометрика : учеб. пособие / В.А. Бывшев. – М. : Финансы и статистика, 2008. – С.331–346.

 


 

11. Для регрессионной модели вида , где рассчитаны дисперсии: ; ; . Тогда величина коэффициента детерминации рассчитывается по формуле …

     
       
       
     

Решение
Значение коэффициента детерминации характеризует долю дисперсии зависимой переменной, объясненную построенным уравнением регрессии, в общей дисперсии зависимой переменной, то есть .