Взаимодействие двух прямолинейных проводников с током.

Так, два прямолинейных параллельных проводника (рис. 4.2.) притягиваются, если токи в них текут в одном направлении и отталкиваются, если токи имеют противоположное направление.

 

Рисунок 4.2.Взаимодейтвие параллельных проводников с током.

 

Для того, чтобы сформулировать закон Ампера в современном виде, введем понятие элемента тока как вектора, равного произведению силы тока I на элемент длиныпроводника. Элемент тока вмагнитостатике играет ту же роль, что и точечный заряд в электростатике.

 

Рисунок 4.3.Элемент проводника с током.

 

Своими опытами Ампер установил, что сила взаимодействия двух элементов тока:

1) ;

2) ;

3) - зависит от взаимной ориентации элементов тока.

Объединяя эти результаты, можем написать закон Ампера в виде:

 

 

Углы θ1 и θ2 характеризуют ориентацию элементов тока (рис. 4.4.); Коэффициент пропорциональности k зависит от выбора системы единиц измерения.

 

 

Рисунок 4.4. Взаимодействие двух элементов тока.

В системе СИ: , где - магнитная постоянная.

Закон Ампера является аналогом закона Кулона в магнитостатике и выражает собой силу взаимодействия двух элементов тока. Однако в отличие от закона Кулона, он имеет более сложное написание, что обусловлено тем, что элемент тока (в отличие от точечного заряда) характеризуется не только величиной, но и направлением в пространстве. Заметим, что согласно закону Ампера (см. рис.4.). Это кажущеесяпротиворечие с третьим законом Ньютона связано с тем, что в действительности мы имеем дело не с элементами токов, а с замкнутыми макроскопическими токами, для которых третий закон Ньютона выполняется.

В векторной форме закон Ампера записывается следующим образом:

 

.