Основы информатики. 2 страница

Всякое событие, всякое явление служит источником информации.

Любое событие или явление может быть выражено по-разному, разным способом, разным алфавитом. Чтобы информацию более точно и экономно передать по каналам связи, ее надо соответственно закодировать.

Информация не может существовать без материального носителя, без передачи энергии. Закодированное сообщение приобретает вид сигналов-носителей информации. Они-то и идут по каналу. Выйдя на приемник, сигналы должны обрести вновь общепонятный вид.

С этой целью сигналы пробегают декодирующее устройство, приобретая форму, удобную для абонента. Система связи сработала, цель достигнута. Когда говорят о каналах связи, о системах связи, чаще всего для примера берут телеграф. Но каналы связи — понятие очень широкое, включающее множество всяких систем, самых разных.

Чтобы ясен был многоликий характер понятия “канал связи”, достаточно привести несколько примеров.

При телефонной передаче источник сообщения — говорящий. Кодирующее устройство, изменяющее звуки слов в электрические импульсы, — это микрофон. Канал, по которому передается информация — телефонный провод. Та часть трубки, которую мы подносим к уху, выполняет роль декодирующего устройства. Здесь электрические сигналы снова преобразуются в звуки. И наконец, информация поступает в “принимающее устройство” — ухо человека на другом конце провода. А вот канал связи совершенно другой природы — живой нерв. Здесь все сообщения передаются нервным импульсом. Но в технических каналах связи направление передачи информации может меняться, а по нервной системе передача идет в одном направлении.

Еще один пример — вычислительная машина. И здесь те же характерные черты. Отдельные системы вычислительной машины передают одна другой информацию с помощью сигналов. Ведь вычислительная машина — автоматическое устройство для обработки информации, как станок — устройство для обработки металла. Машина не создает из “ничего” информацию, она преобразует только то, что в нее введено.

Общая схема передачи информации

Принимающее устройство    
                   
   
 
     
 
 
 
   
 
   
Передающее устройство    
  Получатель
Передающее устройство    
Источник сообщений    

 


 

Поколения ЭВМ. История ВТ.

Первое поколение — компьютеры на электронных лампах (1946 — 1956г.). За точку отсчета эры ЭВМ обычно принимают 15 февраля 1946 года, когда ученые Пенсильванского университета США ввели в строй первый в мире электронный компьютер ЭНИАК. В нем использовалось 18 тысяч электронных ламп. Машина занимала площадь 135 м3, весила 30 тонн и потребляла 150 кВт электроэнергии. Она использовалась для решения задач, связанных с созданием атомной бомбы. И хотя механические и электромеханические машины появились значительно раньше, все дальнейшие успехи ЭВМ связаны именно с электронными компьютерами. В СССР в 1952 году академиком С.А. Лебедевым была создана самая быстродействующая в Европе ЭВМ БЭСМ. Быстродействие первых машин было несколько тысяч операций в секунду.

Второе поколение — компьютеры на транзисторах (1956 — 1964 г.). Полупроводниковый прибор - транзистор был изобретен в США в 1948 году Шокли и Бардиным. Компьютеры на транзисторах резко уменьшили габариты, массу, потребляемую мощность, повысили быстродействие и надежность. Типичная отечественная машина (серий "Минск", "Урал") содержала около 25 тысяч транзисторов. Лучшая наша ЭВМ БЭСМ-6 имела быстродействие 1 млн. оп/с.

Третье поколение — компьютеры на микросхемах с малой степенью интеграции (1964 — 1971г.). Микросхема была изобретена в 1958 году Дж. Килби в США. Микросхемы позволили повысить быстродействие и надежность ЭВМ, снизить габариты, массу и потребляемую мощность. Первая ЭВМ на микросхемах IBM-360 была выпущена в США в 1965 году, как и первая мини-ЭВМ PDP-8 размером с холодильник. В СССР большие ЭВМ третьего поколения серии ЕС (ЕС-1022-ЕС-1060) выпускались вместе со странами СЭВ с 1972 года. Это были аналоги американских ЭВМ IBM-360, IBM-370.

Четвертое поколение — компьютеры на микропроцессорах (1971 — настоящее время). Микропроцессор — это арифметическое и логическое устройство, выполненное чаще всего в виде одной микросхемы с большой степенью интеграции. Применение микропроцессоров привело к резкому снижению габаритов, массы и потребляемой мощности ЭВМ, повысило их быстродействие и надежность. Первый микропроцессор Intel-4004 был выпущен в США фирмой Intel в 1971 году. Его разрядность была 4 бита. В 1973г. был выпущен 8-битовый Intel-8008, а в 1974 г. Intel-8080. В 1975 г. появился первый в мире персональный компьютер Альтаир-8800, построенный на базе Intel-8080. Началась эра персональных ЭВМ.

В 1976 г. появился персональный компьютер Apple на базе микропроцессора фирмы Motorola, который имел большой коммерческий успех. Он положил начало компьютерам серии Макинтош. Первый компьютер фирмы IBM с названием IBM PC появился в 1981 году. Он был сделан на базе 16-битового микропроцессора Intel-8088 и имел ОЗУ 1 Мб (у всех других машин было тогда ОЗУ 64 Кб). Фактически он стал стандартом персонального компьютера. Сейчас IBM-совместимые компьютеры составляют 90% всех производимых в мире персональных компьютеров. В 1983г. на базе Intel-8088 был выпущен компьютер IBM PC/ХT, имеющий жесткий диск. В 1982г. был сделан 16-битовый процессор Intel-80286, который был использован фирмой IBM в 1984г. в компьютере серии IBM PC/AT. Его быстродействие было в 3 — 4 раза выше, чем у IBM PC/ХT. В 1985г. фирма Intel разработала 32-битовый процессор Intel-80386.

Он содержал примерно 275 тысяч транзисторов и мог работать с 4 Гб дисковой памяти. Для процессоров Intel-80286 и Intel-80386 появились математические сопроцессоры соответственно Intel-80287 и Intel-80387, которые повышали быстродействие компьютеров при математических расчетах и при работе с плавающей запятой. Процессоры 80486 (1989г.), Pentium (1993г.), Pentium-Pro (1995г.), Pentium-2 (1997г.) и Pentium-3 (1999г.) уже имеют встроенный математический сопроцессор. На базе процессоров Pentium собраны многие современные персональные компьютеры.

Пятое поколение (перспективное) — это ЭВМ, использующие новые технологии и новую элементную базу, например сверхбольшие интегральные схемы, оптические и магнито-оптические элементы, работающие посредством обычного разговорного языка, оснащенные огромными базами данных. Предполагается также использовать элементы искусственного интеллекта и распознавание зрительных и звуковых образов. Такие проекты разрабатываются в ведущих промышленно развитых странах.

 

 

Компьютер. Магистрально-модульный принцип построения.

Компьютер (ЭВМ) — электронно-вычислительная машина — это программируемое электронное устройство, предназначенное для обработки и хранения (накопления) информации. По размеру, быстродействию, объему памяти современные ЭВМ принято делить на следующие классы:

СуперЭВМ (CRAY и Эльбрус);

Большие ЭВМ;

МиниЭВМ (персональные компьютеры);

МикроЭВМ.

Современные ПК используются для автоматизации отдельных рабочих мест, обработки деловой информации, обучения и т.д. Все ЭВМ, за небольшим исключением, имеют общую принципиальную схему или, как говорят, архитектуру.

Архитектура ЭВМ — комплекс аппаратных и программных средств, с помощью которых обеспечивается выполнение задач пользователя и программирование задач. Архитектура разделяется на внешнюю и внутреннюю (то, из чего состоит ЭВМ).

СИСТЕМНЫЙ БЛОК
В основу положен модульно-магистральный принцип. Модульный принцип позволяет комплектовать нужную конфигурацию, модернизировать ее. Модульная организация опирается на магистральный (шинный) принцип обмена информацией. Обмен информацией между устройствами производится по трем многоразрядным шинам (многопроводные линии связи).

               
 
Процессор
 
   
Оперативная память
 
     
 

 

 


ШИНА данных -8, 16, 32 разряда  

 

               
 
ШИНА адреса – 16, 20,24, 32 разряда ШИНА (данных -8, 16, 32 разряда  
 
       

 

 


Разрядность шины данных определяется разрядностью процессора (т.е. количество двоичных разрядов, которые процессор обрабатывает за один такт). Шина данных двунаправленная от процессора к устройству и наоборот. Код адреса формируется процессором и передается по шине адреса. Шина однонаправленная (от процессора к устройству). Разрядность определяет объем адресуемой памяти и может не совпадать с разрядностью шины данных. По шине управления передаются сигналы, определяющие характер обмена информацией (ввод/вывод) и сигналы, синхронизирующие взаимодействие устройств.

Системная ШИНА — это аппаратная реализация стандартов взаимодействия различных узлов. Ее разрядность во многом определяет производительность компьютера, поскольку она связывает между собой процессор, ОЗУ, слоты (т.е. специальные разъемы) расширения. Существуют различные стандарты системной шины, которые сложились по мере развития техники: MCA, ISA, VESA, EISA, PCI и SCSI. В компьютерах типа Pentium используется, как правило, шина PCI.

Подключение отдельных модулей ЭВМ к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров, а на программном обеспечивается драйверами. Их совокупность называется интерфейсом.

Принцип открытой архитектуры — это возможность постоянного усовершенствования компьютера IBM PC в целом и его отдельных частей с использованием новых устройств, которые полностью совместимы друг с другом независимо от фирмы-изготовителя. Это дает наибольшую выгоду пользователям, которые могут расширять возможности своих машин, покупая новые устройства и вставляя их в свободные разъемы (слоты) на системной (материнской) плате. Материнская плата — самая большая в ПК плата, на которой размещены микропроцессор, ОЗУ, ПЗУ (BIOS), видеокарта, звуковая карта и другие устройства. Указанные устройства подключаются к материнской плате через специальные разъемы — слоты расширения.

 

Принципы построения компьютеров

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Принцип адресуемости. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских.

 

 

Состав персонального компьютера.

У персональных компьютеров выделяют 2 части: аппаратную часть — Hardware и программное обеспечение Software. Иногда говорят еще о третьей части — Brainware — интеллекте пользователя, способного эффективно использовать как Hardware, так и Software. Описанное как ниже, так и выше пока касается только Hardware.

В состав Персонального Компьютера входят:

Системный блок;

Монитор;

Клавиатура;

Мышь (стандартная конфигурация ПК).

 

Любой компьютер содержит:

Арифметико-логическое устройство (АЛУ),

Запоминающее устройство (память),

Управляющее устройство

Устройство ввода-вывода информации (УВВ) и имеет программу, хранимую в его памяти (архитектура Джона фон Неймана).

СИСТЕМНЫЙ БЛОК включает в себя устройства, обеспечивающие работу компьютера: процессор, оперативное запоминающее устройство (ОЗУ), накопители на гибких и жестких магнитных дисках, источник питания и др. Основные устройства компьютера (процессор, ОЗУ и др.) размещены на материнской плате.

На системном блоке расположены три кнопки: кнопка (или клавиша) включения/выключения машины, кнопка Reset для принудительной перезагрузки машины, кнопка Turbo для изменения быстродействия машины (Hi-высокая скорость, Lo-низкая скорость).

Устройства ввода информации: клавиатура, мышь, накопители на гибких магнитных дисках, модем, компьютерная сеть, сканер, световое перо, джойстик, трекбол, микрофон, дисковод CD-ROM.

Устройства вывода информации: монитор, принтер, плоттер, накопители на гибких магнитных дисках, звуковые колонки, встроенный динамик, стриммер, модем, компьютерная сеть.

ПРОЦЕССОР предназначен для вычислений, обработки информации и управления работой компьютера; ОЗУ, накопители на гибких и жестких магнитных дисках — для хранения информации.

Процессоры характеризуются быстродействием и разрядностью. У машин с процессором 286 быстродействие 1 — 2 млн. операций в секунду при тактовой частоте 8 — 25 МГц.

У машин с процессором 386DX быстродействие 6 — 12 млн. операций в секунду при тактовой частоте 16 — 40 МГц.

У машин с процессором 486DX быстродействие 20 — 40 млн. операций в секунду при тактовой частоте 25 — 50 МГц.

У машин с процессором Pentium быстродействие 100 — 200 млн. операций в секунду при тактовой частоте 60 — 133 МГц.

У машин с процессором Pentium Pro (P6) быстродействие достигает 300 млн. операций в секунду при тактовой частоте 150-200 МГц.

Фирмой Intel разработаны и широко используются микропроцессоры Pentium-2 с тактовой частотой 300, 350 и 400 МГц, производительность которого на 100% больше, чем у процессора Pentium. Процессоры типа Celeron несколько хуже, чем Pentium-2, но зато существенно дешевле. Еще более быстродействующий процессор Pentium-3 имеет тактовую частоту 450-500 МГц. Разработан процессор Pentium-4 с частотой 4000 МГц.

Разрядность процессоров составляет 8, 16, 32, 64 бит. Процессоры 386DX, 486 и Pentium имеют разрядность 32 бит, 286 и 386SX — 16 бит, Pentium-2 — Pentium-4 — 64 бит.

ПАМЯТЬ компьютера бывает внутренней и внешней. К внутренней памяти относится постоянное ЗУ (ПЗУ-BIOS или CMOS Setup), ОЗУ, КЭШ, видеопамять. К устройствам внешней памяти относятся накопители на жестком и гибком магнитных дисках (HDD и FDD), CD-ROM, магнитооптический диск и стриммер.

ОЗУ обладает высоким быстродействием и используется процессором для кратковременного хранения информации во время работы компьютера. При выключении источника питания информация в ОЗУ не сохраняется (разрушается). Машины с процессором 286 имеют в среднем размер ОЗУ 1-2 Мб, 386 — 2-8 Мб, 486 — 8-16 Мб, Pentium и Р6 — 16-32 Мб, Рentium 2 и Рentium 3 — 32-128 Мб.

КЭШ-память — это сверхоперативная сверхскоростная промежуточная память. КЭШ устраняет простои процессора, так как скорость обмена процессора с КЭШ в несколько раз выше, чем с ОЗУ. Наличие КЭШ в 256 Кб может увеличить производительность ПК на 20%. Размер КЭШ-памяти составляет от 64 Кб до 512 Кб.

НАКОПИТЕЛИ на гибких (FDD) и жестких (HDD) магнитных дисках служат для постоянного хранения информации. При выключении источника питания информация на гибких и жестких дисках сохраняется.

Емкость жесткого диска (винчестера) составляет от 10 Мб (на старых машинах) до 400 Гб на современных.

Стандартная емкость дискет — 1,2 Мб (5,25 дюйма) и 720 Кб и 1,44 Мб (3,5 дюйма). На лазерных дисках CD-ROM хранится как правило 650 Мб информации. Но есть CD-ROM емкостью до 5 — 10 Гб. Применяются также магнитооптические диски на 3,5 дюйма емкостью 100, 160, 260 Мб и более.

КЛАВИАТУРА предназначена для ручного ввода информации в компьютер. Она содержит клавиши латинских и русских букв, цифр, различных знаков и специальные функциональные клавиши. Число клавиш у настольных машин равно 101/102 (сейчас стали делать еще больше). У машин типа NoteBook (блокнот) число клавиш равно 83.

Клавиатура компьютера состоит из 6 групп клавиш:

Буквенно-цифровые;

Управляющие (Enter, Backspace, Ctrl, Alt, Shift, Tab, Esc, Caps Lock, Num Lock, Scroll Lock, Pause, Print Screen);

Функциональные (F1-F12);

Цифровая клавиатура;

Управления курсором (->,<-, Page Up, Page Down, Home, End, Delete, Insert);

Световые индикаторы функций (Caps Lock, Num Lock, Scroll Lock).

МОНИТОР (дисплей) предназначен для отображения информации на экране. Существуют текстовый и графический режимы дисплея. Дисплеи воспроизводят цветные и монохромные изображения. Наиболее часто в современных ПК используются мониторы VGA с разрешающей способностью 640*480 точек при передаче 16 цветов и 320*200 для 256 цветов, и мониторы SVGA с разрешающей способностью 800*600, 1024*768, 1280*1024, 1600*1200 при передаче до 16,8 млн. цветов. Размер экрана монитора от 9 до 21 дюйма (23-54 см), но чаще всего 17 дюймов (35,5 см) или 19 дюймов (37,8 см). Размер точки (зерна) от 0,32 мм до 0,21 мм. Чем он меньше, тем лучше.

Видеопамять — это специальная оперативная память, в которой формируется графическое изображение. Чаще всего ее величина от 512 Кб до 4 Мб для самых лучших ПК при реализации 16,7 млн. цветов. Настольные компьютеры, как правило, снабжены телевизионными мониторами. Предпочтение следует отдавать мониторам с низким уровнем излучения (Low Radiation). Компьютеры типа NoteBook часто используют жидкокристаллический дисплей. Он более безопасен, чем телевизионный.

К персональному компьютеру могут подключаться и другие дополнительные устройства (мышь, принтер, сканер и др.). Подключение производится через Порты - специальные разъемы на задней панели.

ПОРТЫ бывают параллельные и последовательные. По последовательному порту информация передается поразрядно (более медленно) по малому числу проводов. К последовательному порту подключаются мышь и модем. По параллельному порту информация передается одновременно по большому числу проводов, соответствующему числу разрядов. Скорость передачи информации при этом выше, но длина проводов может быть не более 1,5 м. К параллельному порту подключается принтер и выносной винчестер.

ПРИНТЕРЫ предназначены для распечатки текста и графических изображений. Принтеры бывают матричные, струйные и лазерные. Они, как правило, подключаются к параллельному порту LPT1. Струйные и лазерные принтеры позволяют осуществлять цветную печать. Матричные принтеры бывают с 9-игольчатой и 24-игольчатой головкой (более медленная, но более качественная печать). Они подобны пишущей машинке - печать производится ударом матрицы из иголок через красящую ленту, ресурс которой около 500 листов бумаги. Матричные принтеры относительно дешевы и дают удовлетворительное качество печати как на английском, так и на русском языке. Максимальное разрешение 9-игольного принтера Epson FX-100 — 244 точки на дюйм.

МЫШЬ представляет собой манипулятор для управления программами, внешне похожий на мышку. Она резко облегчает процесс управления, но многие современные программы, например Windows, просто не могут нормально работать без мыши. Большинство программ используют две из трех клавиш мыши. Левая клавиша — основная, ей управляют компьютером. Она играет роль клавиши Enter. Функции правой клавиши зависят от программы. Часто она играет роль клавиши Esc. Если пользователь "левша", то можно в ряде программ поменять клавиши местами. Для мыши, как правило, используется специальный коврик для более надежного контакта с шариком мыши при перемещении ее по столу. Мыши бывают механическая и оптическая.

 

Процессор.

Процессор (микропроцессор, центральный процессор, CPU) – основная микросхема компьютера, в которой и производятся все вычисления. Он представляет из себя большую микросхему (например, размеры микропроцессора Pentium примерно 5*5*0,5 см), которую можно легко найти на материнской плате. На процессоре установлен большой медный ребристый радиатор, охлаждаемый вентилятором. Конструктивно процессор состоит из ячеек, в которых данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная тина и командная шина.

Адресная шина. У процессоров Intel Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе процессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (например, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных – как адресные данные, а часть – как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемыми.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, Intel Pentium 60,66,75,90,100,133; несколько моделей процессоров Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, Intel Xeon, Intel Pentium III (см. рис. 2.3,а), Intel Pentium IV и другие. Все эти модели, и не только они, а также многие модели процессоров компаний AMD и Cyrix относятся к семейству х86 и обладают совместимостью по принципу «сверху вниз».

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В, а в настоящее время оно составляет менее 3 В. Причем ядро процессора питается пониженным напряжением 2,2 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты, некоторых процессоров уже превосходят 500 миллионов тактов в секунду (500 МГц).

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводников и микросхем. По чисто физическим причинам материнская плата не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более.