Основные этапы развития нервной системы
Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одноклеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выделить такие этапы.
1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ротовых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная система проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальнейших этапах развития многоклеточных животных она теряет значение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.
2. Ганглиозная нервная система (в червеобразных) синап-тическая, проводит возбуждение в одном направлении и обеспечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные органы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией располагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.
3. Трубчатая нервная система (в позвоночных) отличается от нервной системы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие центральной нервной системы, отдельные части и структуры которой формируются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозговой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последовательно развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментиру-ется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг (рис. см. 1).
Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирующих элементов, которые обеспечиваются расчленением центральных нервных аппаратов на отдельные функциональные единицы нейроны. Следовательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие центральной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только регулируют функции более древних, низших нервных структур, а и соподчиняют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между головным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функционированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.
Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологическом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию -в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субординации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.
Нервная система имеет нейронный тип строения, т. е. состоит из нервных клеток - нейронов, которые развиваются из нейробластов.
Нейрон является основной морфологической, генетической и функциональной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нервных клеток являются хроматофильная субстанция и нейрофибриллы. Хро-матофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функционального состояния нейрона: исчезает в случае истощения нервной клетки и восстанавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Голь-джи), митохондрии и другие органоиды. Сосредоточение тел нервных клеток формируют нервные центры, или так называемое серое вещество.
Нервные волокна - это отростки нейронов. В границах центральной нервной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные волокна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шван-новской оболочки) и базальной мембраны. Мембрана аксона служит для проведения электрического импульса и в участке аксональных окончании выделяет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерываются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке начального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).
Основными функциями нейрона являются восприятие и переработка информации, проведение ее к другим клеткам. Нейроны выполняют также трофическую функцию, влияя на обмен веществ в аксонах и дендритах. Различают следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассоциативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечивают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлекторной дуги. Нервное возбуждение по ней передается лишь в одном направлении. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.
Нервные клетки контактируют между собой через синапсы специализированные структуры, где нервный импульс переходит из нейрона на нейрон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать информацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синап-тическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергиче-ских - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропеп-тиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (деполяризация), и тормозные, которые могут тормозить действие сигналов (гиперполяризация). Нервным клеткам присущ низкий уровень возбуждения.
Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.
1. Нейрон является анатомической единицей нервной системы; он состоит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично проницаемой мембраной, которая выполняет барьерную функцию.
2. Каждый нейрон является генетической единицей, развивается из независимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.
3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функционирует как единица лишь в коммуникационном звене; в изолированном состоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».
4. Каждый нейрон проводит нервный импульс лишь в одном направлении: от дендрита к телу нейрона, аксону, синаптическому соединению (динамическая поляризация нейронов).
5. Нейрон является патологической единицей, т. е. реагирует на повреждение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).
6. Каждый нейрон является регенеративной единицей: у человека регенерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.
Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологической и регенеративной единицей нервной системы.
Кроме нейронов, которые образовывают паренхиму нервной ткани, важным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество которых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секреторная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиаторов центральной нервной системы. Нейроглия играет важную роль также в синаптической передаче. Она обеспечивает структурную и метаболическую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.
Анатомо-топографические отделы нервной системы
Нервная система объединяет ряд отделов и структур, которые в совокупности обеспечивают связь организма с окружающей средой, регуляцию жизненных процессов, координацию и интеграцию деятельности всех органов и систем. Нервная система является иерархией уровней, разных по своему строению, фило- и онтогенетическому происхождению. Идея уровней нервной системы была научно доказана на основе эволюционного учения Дарвина. В неврологии эту идею справедливо связывают с именем шотландского невролога Джексона (J.H. Jackson). Различают четыре анатомо-топографических отдела нервной системы.
1. Рецепторно-эффекторный отдел берет начало в рецепторах каждого из анализаторов, которые определяют характер раздражения, трансформируют его в нервный импульс, не перекручивая информации. Рецепторный отдел - это первый уровень аналитико-синтетической деятельности нервной системы, на основе которой формируются реакции-ответы. Эффекторы бывают двух типов - двигательные и секреторные.
2. Сегментарный отдел спинного мозга и ствола головного мозга включает передние и задние рога спинного мозга с соответствующими передними и задними корешками и их аналоги в стволе мозга - ядра черепных нервов, а также их корешки. В спинном мозге и стволе находится белое вещество -восходящие и нисходящие проводящие пути, которые осуществляют связь сегментов спинного мозга между собой или с соответствующими ядрами головного мозга. Отростки вставных клеток заканчиваются синапсами в границах серого вещества спинного мозга. На уровне сегментарного отдела спинного мозга, мозгового ствола замыкаются рефлекторные дуги безусловных рефлексов. Поэтому этот уровень называют еще рефлекторным. Сегментарно-рефлекторный отдел - это пункт перекодировки информации, которая воспринимается рецепторами. Через сегментарно-рефлекторный уровень спинного мозга и стволовые образования осуществляется связь коры большого мозга, подкорковых структур с окружающей средой.
3. Подкорковый интегративный отдел включает подкорковые (базальные) ядра: хвостатое ядро, скорлупу, бледный шар, таламус. Он содержит афферентные и эфферентные каналы связи, которые соединяют отдельные ядра между собой и с соответствующими участками коры большого мозга. Подкорковый отдел - это второй уровень анализа и синтеза информации. С помощью тонкого аппарата обработки сигналов окружающей и внутренней среды организма он обеспечивает отбор важнейшей информации и готовит ее к приему корой. Другая информация направляется в ядра сетчатой формации, где она интегрируется, а потом восходящими путями поступает в кору, поддерживая ее тонус.
4. Корковый отдел головного мозга - это третий уровень анализа и синтеза. В кору поступают сигналы разной степени сложности. Здесь осуществляются раскодирование информации, высший анализ и синтез нервных импульсов. Высшая форма аналитико-синтетической деятельности мозга человека обеспечивает мышление и сознание.
Следует отметить, что четкой границы между отдельными отделами нервной системы не существует. Примером может быть тот факт, что низшие нервные образования содержат элементы молодых структур. В частности, волокна корково-спинномозговых путей, которые являются аксонами больших пирамидных клеток коры прецентральной извилины, проходят в границах спинного мозга и оканчиваются на альфа-мотонейронах его передних рогов. Последнее обеспечивает постоянную циркуляцию импульсов между высшими и низшими отделами нервной системы. Причем, если учитывать функциональные взаимосвязи между корой, подкоркой и спинным мозгом, которые основываются на принципах субординации, становится понятным, что низшие нервные уровни соподчинены высшим. Формируется своеобразная иерархия нервных уровней, согласно которой более древние нервные образования подчинены высшим и непосредственно тормозятся всеми высшими отделами. Если поражаются структуры головного мозга, то наступает растор-маживание сегментарного уровня спинного мозга, вследствие чего повышаются сухожильные и периостальные рефлексы, появляются патологические рефлексы. Поэтому в настоящее время считают, что существует вертикальная организация управления нервной системой. Знание этих закономерностей имеет принципиальное значение в расшифровке и понимании многих симптомов, которые наблюдаются в клинике нервных болезней.
Основные принципы функционирования нервной системы
Основным и специфическим проявлением деятельности нервной системы является рефлекторный принцип. Это способность организма реагировать на внешние или внутренние раздражения двигательной, или секреторной реакцией. Основы учения о рефлекторной деятельности организма были заложены французским ученым Рене Декартом (1596—1650). Наибольшее значение имели его представления о рефлекторном механизме взаимоотношений организма с окружающей средой. Сам термин «рефлекс» был введен значительно позднее - в основном после выхода работ выдающегося чешского анатома и физиолога Г. Прохаски (1749-1820).
Рефлекс - это закономерная реакция организма в ответ на раздражение рецепторов, которая осуществляется рефлекторной дугой при участии центральной нервной системы. Это приспособительная реакция организма в ответ на изменение внутренней или окружающей среды. Рефлекторные реакции обеспечивают целостность организма и постоянство его внутренней среды, рефлекторная дуга является основной единицей интегративной рефлекторной активности.
Значительный вклад в развитие рефлекторной теории внес И.М. Сеченов (1829-1905). Он первым использовал рефлекторный принцип для изучения физиологических механизмов психических процессов. В работе «Рефлексы головного мозга» (1863) И.М. Сеченов аргументировано доказал, что психическая деятельность человека и животных осуществляется по механизму рефлекторных реакций, которые происходят в головном мозге, включая самые сложные из них - формирование поведения и мышление. На основании проведенных исследований он сделал вывод, что все акты сознательной и бессознательной жизни являются рефлекторными. Рефлекторная теория И.М. Сеченова послужила основой, на которой возникло учение И.П. Павлова (1849-1936) о высшей нервной деятельности. Разработанный им метод условных рефлексов расширил научное понимание роли коры большого мозга как материального субстрата психики. И.П. Павлов сформулировал рефлекторную теорию работы головного мозга, которая основывается на трех принципах: причинности, структурности, единстве анализа и синтеза. П. К. Анохин (1898—1974) доказал значение обратной связи в рефлекторной деятельности организма. Суть ее состоит в том, что во время осуществления любого рефлекторного акта процесс не ограничивается лишь эффектором, а сопровождается возбуждением рецепторов рабочего органа, от которых информация о последствиях действия поступает афферентными путями к центральной нервной системе. Появились представления о «рефлекторном кольце», «обратной связи».
Рефлекторные механизмы играют существенную роль в поведении живых организмов, обеспечивая адекватное их реагирование на сигналы окружающей среды. Для животных действительность сигнализируется почти исключительно раздражениями. Это первая сигнальная система действительности, общая для человека и животных. И.П. Павлов доказал, что для человека, в отличие от животных, объектом отображения является не только окружающая среда, но и общественные факторы. Поэтому для него решающее значение приобретает вторая сигнальная система - слово как сигнал первых сигналов.
Условный рефлекс лежит в основе высшей нервной деятельности человека и животных. Он всегда включается как существенный компонент в самых сложных проявлениях поведения. Однако не все формы поведения живого организма можно объяснить с точки зрения рефлекторной теории, которая раскрывает лишь механизмы действия. Рефлекторный принцип не дает ответа на вопрос о целесообразности поведения человека и животных, не учитывает результата действия.
Поэтому на протяжении последних десятилетий на основании рефлекторных представлений сформировалось понятие относительно ведущей роли потребностей как движущей силы поведения человека и животных. Наличие потребностей является необходимой предпосылкой любой деятельности. Деятельность организма приобретает определенную направленность лишь при наличии цели, которая отвечает данной потребности. Каждому поведенческому акту предшествуют потребности, которые возникли в процессе филогенетического развития под влиянием условий окружающей среды. Именно поэтому поведение живого организма определяется не столько реакцией на внешние воздействия, сколько необходимостью реализации намеченной программы, плана, направленных на удовлетворение той или иной потребности человека или животного.
П.К. Анохин (1955) разработал теорию функциональных систем, которая предусматривает системный подход к изучению механизмов работы головного мозга, в частности, разработки проблем структурно-функциональной основы поведения, физиологии мотиваций и эмоций. Суть концепции - мозг может не только адекватно реагировать на внешние раздражения, но и предусматривать будущее, активно строить планы своего поведения и реализо-вывать их. Теория функциональных систем не исключает метода условных рефлексов из сферы высшей нервной деятельности и не заменяет его чем-то другим. Она дает возможность глубже вникать в физиологическую сущность рефлекса. Вместо физиологии отдельных органов или структур мозга системный подход рассматривает деятельность организма в целом. Для любого поведенческого акта человека или животного нужна такая организация всех мозговых структур, которая обеспечит нужный конечный результат. Итак, в теории функциональных систем центральное место занимает полезный результат действия. Собственно факторы, которые находятся в основе достижения цели, формируются по типу разносторонних рефлекторных процессов.
Одним из важных механизмов деятельности центральной нервной системы является принцип интеграции. Благодаря интегрированию соматических и вегетативных функций, которое осуществляется корой большого мозга через структуры лимбико-ретикулярного комплекса, реализуются разнообразные приспособительные реакции и поведенческие акты. Высшим уровнем интеграции функций у человека являются лобные отделы коры.
Важную роль в психической деятельности человека и животных играет принцип доминанты, разработанный О. О. Ухтомским (1875-1942). Доминанта (от лат. dominari господствовать) это превосходящее в центральной нервной системе возбуждение, которое формируется под влиянием стимулов окружающей или внутренней среды и в определенный момент подчиняет себе деятельность других центров.
Головной мозг с его высшим отделом - корой большого мозга - это сложная саморегулировочная система, построенная на взаимодействии возбудительных и тормозных процессов. Принцип саморегуляции осуществляется на разных уровнях анализаторных систем - от корковых отделов до уровня рецепторов с постоянным подчинением низших отделов нервной системы высшим.
Изучая принципы функционирования нервной системы, не без основания головной мозг сравнивают с электронной вычислительной машиной. Как известно, основой работы кибернетического оснащения являются прием, передача, переработка и сохранение информации (память) с дальнейшим ее воспроизведением. Для передачи информация должна быть закодирована, а для воспроизведения - раскодирована. Пользуясь кибернетическими понятиями, можно считать, что анализатор принимает, передает, перерабатывает и, возможно, сохраняет информацию. В корковых отделах осуществляется ее раскодирование. Это, наверное, достаточно, чтобы сделать возможной попытку сравнить мозг с компьютером. Вместе с тем нельзя отождествлять работу головного мозга с вычислительной машиной: «...мозг — наиболее капризная машина в мире. Будем же скромными и осторожными с выводами» (И.М. Сеченов, 1863). Компьютер - это машина и ничего больше. Все кибернетические устройства работают по принципу электрического или электронного взаимодействия, а в головном мозге, который создан путем эволюционного развития, кроме того, происходят сложные биохимические и биоэлектрические процессы. Они могут осуществляться только в живой ткани. Головной мозг, в отличие от электронных систем, функционирует не по принципу «все или ничего», а учитывает великое множество градаций между этими двумя крайностями. Эти градации обусловлены не электронными, а биохимическими процессами. В этом существенное отличие физического от биологического. Головной мозг имеет качества, которые выходят за пределы тех, которые имеет вычислительная машина. Следует добавить, что поведенческие реакции организма в значительной мере определяются межклеточным взаимодействием в центральной нервной системе. К одному нейрону, как правило, подходят отростки от сотен или тысяч других нейронов, и он, в свою очередь, ответвляется в сотни или тысячи других нейронов. Никто не может сказать, сколько в мозге синапсов, но число 1014(сто триллионов) не кажется невероятным (Д. Хьюбел, 1982). Компьютер вмещает значительно меньше элементов. Функционирование головного мозга и жизнедеятельность организма осуществляются в конкретных условиях окружающей среды. Поэтому удовлетворение тех или иных потребностей может быть достигнуто при условии адекватности этой деятельности существующим внешнесредовым условиям.
Для удобства изучения основных закономерностей функционирования головной мозг разделяют на три основные блока, каждый из которых выполняет свои определенные функции.
Первый блок - это филогенетически древнейшие структуры лимбико-ретикулярного комплекса, которые расположены в стволовых и глубинных отделах головного мозга. В их состав входят поясная извилина, морской конек (гиппокамп), сосочкоподобное тело, передние ядра таламуса, гипоталамус, сетчатая формация. Они обеспечивают регуляцию жизненно необходимых функций - дыхания, кровообращения, обмена веществ, а также общего тонуса. Относительно поведенческих актов, то эти образования принимают участие в регуляции функций, направленных на обеспечение пищевого и сексуального поведения, процессов сохранения вида, в регуляции систем, которые обеспечивают сон и бодрствование, эмоциональную деятельность, процессы памяти.Второй блок - это совокупность образований, размещенных позади центральной борозды: соматосенсорные, зрительные и слуховые зоны коры большого мозга. Основные их функции: прием, переработка и сохранение информации.Нейроны системы, которые размещены преимущественно кпереди от центральной борозды и связаны с эффекторными функциями, реализацией двигательных программ, составляют третий блок.Тем не менее следует признать, что нельзя провести четкой границы между сенсорными и моторными структурами мозга. Постцентральная извилина, которая является чувствительной проекционной зоной, тесно взаимосвязана с прецентральной двигательной зоной, образовывая единое сенсомоторное поле. Поэтому необходимо четко понимать, что та или другая деятельность человека требует одновременного участия всех отделов нервной системы. Причем система в целом выполняет функции, которые выходят за пределы функций, присущих каждому из указанных блоков.
Анатомо-физиологическая характеристика и патология черепных нервов
Черепные нервы, отходящие от головного мозга в количестве 12 пар, иннервируют кожу, мышцы, органы головы и шеи, а также некоторые органы грудной и брюшной полостей. Из них III, IV,
VI, XI, XII пары являются двигательными, V, VII, IX, X смешанными, I, II и VIII пары - чувствительными, обеспечивающими соответственно специфическую иннервацию органов обоняния, зрения и слуха; I и II пары - производные головного мозга, ядер в мозговом стволе не имеют. Все другие черепные нервы выходят из мозгового ствола или входят в него, где находятся их двигательные, чувствительные и вегетативные ядра. Так, ядра III и IV пар черепных нервов расположены в ножке мозга, V, VI, VII, VIII пар - преимущественно в покрышке моста, IX, X, XI, XII пар - в продолговатом мозге.
Кора большого мозга
Головной мозг (encephalon, cerebrum) включает правое и левое полушария и мозговой ствол. Каждое полушарие имеет три полюса: лобный, затылочный и височный. В каждом полушарии различают четыре доли: лобную, теменную, затылочную, височную и островок (см. рис. 2).
Полушария головного мозга (hemispheritae cerebri) называют еще большим, или конечным мозгом, нормальное функционирование которого предопределяет специфические для человека признаки. Головной мозг человека состоит из муль-типолярных нервных клеток - нейронов, количество которых достигает 1011 (ста миллиардов). Это приблизительно столько же, сколько звезд в нашей Галактике. Средняя масса головного мозга взрослого человека составляет 1450 г. Для нее характерны значительные индивидуальные колебания. Например, у таких выдающихся людей, как писатель И.С. Тургенев (63 года), поэт Байрон (36 лет), она составляла соответственно 2016 г и 2238 г, у других, не менее талантливых - французского писателя А. Франса (80 лет) и политолога и философа Г.В. Плеханова (62 года) - соответственно 1017 г. и 1180 г. Изучение головного мозга великих людей не раскрыло тайну интеллекта. Зависимости массы мозга от творческого уровня лица не выявлено. Абсолютная масса мозга женщин на 100-150 г меньше, чем масса мозга мужчин.
Мозг человека отличается от мозга человекообразных обезьян и других высших животных не только большей массой, а и значительным развитием лобных долей, что составляет 29 % всей массы головного мозга. Значительно опережая рост других долей, лобные доли продолжают увеличиваться на протяжении первых 7-8 лет жизни ребенка. Очевидно, это обусловлено тем, что они связаны с двигательной функцией. Именно из лобных долей берет начало пирамидный путь. Важное значение лобной доли и в осуществлении высшей нервной деятельности. В отличие от животного в теменной доле головного мозга человека дифференцируется нижняя теменная долька. Ее развитие связывают с появлением речевой функции.
Мозг человека - наиболее совершенен из всего, что создала природа. Вместе с тем, это самый сложный объект для познания. Какой же в общем понимании аппарат дает мозгу возможность выполнять свою чрезвычайно сложную функцию? Количество нейронов в мозге составляет около 1011, количество синапсов, или контактов между нейронами, равняется около 1015. В среднем на каждом нейроне насчитывается несколько тысяч отдельных входов, а он сам посылает связи многим другим нейронам (Ф. Крик, 1982). Это лишь отдельные основные положения учения о мозге. Научные исследования мозга прогрессируют, хотя и медленно. Тем не менее, это не означает, что в будущем в любой момент не будет сделано открытие или ряд открытий, благодаря которым раскроются тайны работы мозга. Этот вопрос касается самой сущности человека, и поэтому принципиальные изменения в наших взглядах на человеческий мозг значительно повлияют на нас самих, окружающий мир и на другие области научных исследований, дадут ответ на целый ряд биологических и философских вопросов. Тем не менее, это еще перспективы развития науки о мозге. Их осуществление будет подобно тем переворотам, которые были сделаны Коперником, который доказал, что Земля не является центром Вселенной; Дарвиным, который установил, что человек находится в родственной связи со всеми другими живыми существами; Ейнштейном, который ввел новые понятия относительно времени и пространства, массы и энергии; Вотсоном и Криком, которые показали, что биологическую наследственность можно объяснить физическими и химическими понятиями (Д. Хъюбел, 1982).
Кора большого мозга покрывает его полушария, имеет борозды, которые разделяют ее на доли и извилины, вследствие чего значительно увеличивается ее площадь. На верхнебоковой (внешней) поверхности полушария большого мозга размещены две самые большие первичные борозды - центральная борозда (sulcus centralis), отделяющая лобную долю от теменной, и боковая борозда (sulcus lateralis), которую нередко называют сильвиевой; она отделяет лобную и теменную доли от височной (см. рис. 2). На медиальной поверхности полушария большого мозга различают теменно-затылочную борозду (sulcus parietooccipitalis), которая отделяет теменную долю от затылочной (см. рис. 4). Каждое полушарие большого мозга имеет также нижнюю (базальную) поверхность.
Кора большого мозга - эволюционно наиболее молодое образование, самое сложное по строению и функции. Она имеет исключительно важное значение в организации жизнедеятельности организма. Кора полушарий мозга развивалась как аппарат адаптации к меняющимся условиям окружающей среды. Приспособительные реакции определяются взаимодействием соматических и вегетативных функций. Именно кора большого мозга обеспечивает интеграцию этих функций через лимбико-ретикулярный комплекс. Она не имеет прямой связи с рецепторами, но получает важнейшую афферентную информацию, частично уже переработанную на уровне спинного мозга, в стволе и подкорковом отделе головного мозга. В коре чувствительная информация поддается анализу и синтезу. Даже по наиболее осторожным оценкам в мозге человека на протяжении 1 с осуществляется около 1011элементарных операций (О. Форстер, 1982). Именно в коре нервными клетками, связанными между собой многими отростками, осуществляется анализ сигналов, которые поступают в организм, и принимаются решения относительно их реализации.
Подчеркивая ведущую роль коры большого мозга в нейрофизиологических процессах, необходимо отметить, что этот высший отдел центральной нервной системы может нормально функционировать лишь при тесном взаимодействии с подкорковыми образованиями, сетчатым образованием мозгового ствола. Здесь уместно напомнить высказывание П.К. Анохина (1955) о том, что, с одной стороны, развивается кора большого мозга, а с другой - ее энергетическое обеспечение, т. е. сетчатое образование. Последнее контролирует все сигналы, которые направляются к коре большого мозга, пропускает определенное их количество; избыточные сигналы кумулируются, а в случае информационного голода добавляются к общему потоку.
Цитоархитектоника коры большого мозга
Кора большого мозга - это серое вещество поверхности больших полушарий толщиной 3 мм. Максимального развития она достигает в прецен-тральной извилине, где толщина ее приближается к 5 мм. В коре большого мозга человека содержится около 70 % всех нейронов центральной нервной системы. Масса коры большого мозга у взрослого человека составляет 580 г, или 40 % всей массы мозга. Общая площадь коры около 2200 см2, что в 3 раза превышает площадь внутренней поверхности мозгового черепа, к которой она прилегает. Две трети площади коры большого мозга скрыты в большом количестве борозд (sulci cerebri).
Первые зачатки коры большого мозга формируются у человеческого зародыша на 3-м месяце эмбрионального развития, на 7-м месяце большая часть коры состоит из 6 пластинок, или слоев. Немецкий невролог К. Брод-ман (1903) дал слоям такие названия: молекулярная пластинка (lamina molecularis), наружная зернистая пластинка (lamina granulans externa), наружная пирамидная пластинка (lamina pyramidal is externa), внутренняя зернистая пластинка (lamina granulans interna), внутренняя пирамидная пластинка (lamina pyramidalis interna seu ganglionaris) и мультиформная пластинка (lamina miltiformis).
Структура коры большого мозга:
а - слои клеток; б - слои волокон; I - молекулярная пластинка; II - внешняя зернистая пластинка; III - внешняя пирамидная пластинка; IV - внутренняя зернистая пластинка; V - внутренняя пирамидная (ганглиозная) пластинка; VI - мультиформная пластинка (Via - клетки треугольной формы; VIб - клетки веретенообразной формы)
Морфологическое строение коры большого мозга в разных его участках подробно было описано профессором Киевского университета И.О. Бецом в 1874 г. Он впервые описал гигантские пирамидные клетки в пятом слое коры прецентральной извилины. Эти клетки известны как клетки Беца. Аксоны их направляются к моторным ядрам ствола головного и спинного мозга, образуя пирамидный путь. В.О. Бец впервые ввел термин «цитоархитекто-ника коры». Это наука о клеточном строении коры, количестве, форме и расположении клеток в разных ее слоях. Цитоархитекто-нические особенности строения разных участков коры большого мозга являются основой распределения ее на области, подобласти, поля и подполя.Отдельные поля коры отвечают за определенные проявления высшей нервной деятельности: речь, зрение, слух, обоняние и т. п. Топография полей коры большого мозга человека детально исследована К. Бродманом, который составил соответствующие карты коры. Всю поверхность коры, по К. Бродману, делят на 11 участков и 52 поля, которые отличаются особенностями клеточного состава, строения и исполнительной функции.
У человека различают три формации мозговой коры: новую, древнюю и старую. Они значительно отличаются по своему строению.Новая кора (neocortex) составляет приблизительно 96 % всей поверхности большого мозга и включает затылочную долю, верхнюю и нижнюю теменную, прецентральную и постцентральную извилины, а также лобную и височную доли мозга, островок. Это гомотопическая кора, она имеет пластинчатый тип строения и состоит преимущественно из шести слоев. Пластинки по мощности своего развития варьируют в разных полях. В частности, в прецентральной извилине, которая является моторным центром коры большого мозга, хорошо развиты наружная пирамидная, внутренняя пирамидная и мультиформная пластинки и хуже - наружная и внутренняя зернистая пластинки.
Древняя кора (paleocortex) включает обонятельный бугорок, прозрачную перегородку, периамигдалярную и препириформную области. Она связана с древними функциями мозга, касающимися обоняния, вкуса. Древняя кора отличается от коры новой формации тем, что покрыта белым пластом волокон, часть которых состоит из волокон обонятельного пути (tractus olfactorius). Кора лимбической системы также является древней частью коры, она имеет трехслойную структуру.
Старая кора (archicortex) включает аммониев рог, зубчатую извилину. Она тесно связана с областью гипоталамуса (corpus mammillare) и лимбической корой. Старая кора отличается от древней тем, что она четко отделена от подкорковых образований. Функционально она связана с эмоциональными реакциями.
Древняя и старая кора составляет приблизительно 4 % коры большого мозга. Она не проходит в эмбриональном развитии периода шестислойного строения. Такая кора имеет трех- или однослойную структуру и получила название гетеротопической.
Почти одновременно с изучением клеточной архитектоники коры началось изучение ее миелоархитектоники, т. е. исследование волокнистого строения коры с точки зрения определения тех отличий, которые имеются в отдельных ее участках. Миелоархитектоника коры характеризуется наличием шести слоев волокон в границах коры большого мозга с разными строками их миелинизации (рис. б).Среди нервных волокон полушарий большого мозга различают ассоциативные волокна, соединяющие отдельные участки коры в границах одного полушария, комиссуральные, соединяющие кору разных полушарий, и проекционные, соединяющие кору с низшими отделами центральной нервной системы.
Таким образом, кора большого мозга разделена на участки и поля. Все они имеют особую специфическую, присущую им структуру.Что касается функций, то различают три основных типа корковой деятельности. Первый тип связан с деятельностью отдельных анализаторов и обеспечивает простейшие формы познания. Это первая сигнальная система. Второй тип включает вторую сигнальную систему, работа которой тесно связана с функцией всех анализаторов. Это более сложный уровень корковой деятельности, которая непосредственно касается речевой функции. Слова для человека являются таким же условным раздражителем, как и сигналы действительности. Третий тип корковой деятельности обеспечивает целеустремленность действий, возможность перспективного их планирования, которое функционально связано с лобными долями полушарий большого мозга.
Таким образом, человек воспринимает окружающий мир на основе первой сигнальной системы, а логическое, абстрактное мышление связано со второй сигнальной системой, которая является высшей формой нервной деятельности человека.
Автономная (вегетативная) нервная система
Как уже отмечалось в предыдущих главах, сенсорная и моторная системы воспринимают раздражение, осуществляют чувствительную связь организма с окружающей средой и обеспечивают движения путем сокращения скелетных мышц. Эта часть общей нервной системы называется соматической. Вместе с тем существует и вторая часть нервной системы, которая отвечает за процесс питания организма, обмен, выделение, рост, размножение, циркуляцию жидкостей, т. е. регулирует деятельность внутренних органов. Она называется автономной (вегетативной) нервной системой. Существуют разные терминологические обозначения этого отдела нервной системы. По Международной анатомической номенклатуре общепринятый термин - «автономная нервная система». Однако в отечественной литературе традиционно используется и прежнее название - вегетативная нервная система. Разделение общей нервной системы на две тесно взаимосвязанные части отображает ее специализацию при сохранении интегративной функции центральной нервной системы как основы целостности организма. Функции вегетативной нервной системы:
· трофотропная - регуляция деятельности внутренних органов, поддержание постоянства внутренней среды организма - гомеостаза;
· эрготропная вегетативное обеспечение процессов адаптации организма к условиям окружающей среды, т. е. обеспечение различных форм психической и физической деятельности организма: повышение АД, учащение пульса, углубление дыхания, повышение уровня глюкозы в крови, выброс гормонов надпочечников и другие функции. Указанные физиологические функции регулируются самостоятельно (автономно), без произвольного управления ними.
Томас Уиллис выделил из блуждающего нерва пограничный симпатичный ствол, а Якоб Уинслоу (1732) детально описал его строение, связь с внутренними органами, отметив, что «...одна часть тела влияет на другую, возникают ощущения - симпатия». Так возник термин «симпатическая система», т. е. система, связывающая органы между собою и с центральной нервной системой. В 1800 г. французский анатом М. Биша разделил нервную систему на два отдела: анимальную (животную) и вегетативную (растительную). Последняя обеспечивает процессы обмена, необходимые для существования, как животного организма, так и растений. Хотя в тот период такие представления полностью не воспринимались, а потом были вообще отброшены, но предложенный термин «вегетативная нервная система» получил широкое распространение и сохранился до настоящего времени.
Английский ученый Джон Ленгли установил, что разные нервные вегетативные проводниковые системы осуществляют противоположные влияния на органы. На основе этих функциональных отличий в вегетативной нервной системе выделили два отдела: симпатический и парасимпатический. Симпатический отдел автономной нервной системы активирует деятельность организма в целом, обеспечивает защитные функции (иммунные процессы, барьерные механизмы, терморегуляцию), парасимпатический - поддерживает гомеостаз в организме. По своей функции парасимпатическая нервная система анаболическая, она способствует накапливанию энергии. Кроме того, часть внутренних органов имеет еще метасимпатические нейроны, которые осуществляют местные механизмы регуляции внутренних органов. Симпатическая нервная система иннервирует все органы и ткани организма, тогда как сфера деятельности парасимпатической нервной системы относится в основном к внутренним органам. Большинство внутренних органов имеют двойную, симпатическую и парасимпатическую, иннервацию. Исключение составляют центральная нервная система, большинство сосудов, матка, мозговое вещество надпочечников, потовые железы, которые не имеют парасимпатической иннервации.
Первые анатомические описания структур вегетативной нервной системы были сделаны еще Галеном и Везалием, которые изучали анатомию и функцию блуждающего нерва, хотя и ошибочно относили к нему и другие образования. В XVII ст.
Анатомия
По анатомическим критериям вегетативную нервную систему разделяют на сегментарный и надсегментарный отделы.
Сегментарный отдел вегетативной нервной системы обеспечивает вегетативную иннервацию отдельных сегментов тела и внутренних органов, которые к ним относятся. Он подразделяется на симпатическую и парасимпатическую часть.
Центральным звеном симпатической части вегетативной нервной системы является ядро Якобсона нейроны боковых рогов спинного мозга от нижнего шейного (С8) до поясничных (L2-L4) сегментов. Аксоны этих клеток выходят из спинного мозга в составе передних спинномозговых корешков. Далее они в виде преганглионарных волокон (белые соединительные ветви) идут к симпатическим узлам пограничного (симпатического) ствола, где перерываются. Симпатический ствол располагается по обе стороны от позвоночника и образуется паравертебральными узлами, из которых 3 шейных, 10-12 грудных, 3-4 поясничных и 4 крестцовых. В узлах симпатического ствола часть волокон (преганглионарные) заканчивается. Другая часть волокон, не перерываясь, идет к превертебральным сплетениям (на аорте и ее ветвях - брюшное, или солнечное сплетение). От симпатического ствола и промежуточных узлов берут начало постгангионарные волокна (серые соединительные ветви), которые не имеют миелиновой оболочки. Они иннервируют различные органы и ткани.
Схема строения сегментарного отдела автономной (вегетативной) нервной системы:
1 - краниобульбарный отдел парасимпатической нервной системы (ядра III, VII, IX, X пар черепных нервов); 2 - сакральный (крестцовый) отдел парасимпатической нервной системы (боковые рога S2-S4 сегментов); 3 - симпатический отдел (боковые рога спинного мозга на уровне C8-L3 сегментов); 4 - ресничный узел; 5 - крылонебный узел; 6 - подчелюстной узел; 7 - ушной узел; 8 - симпатический ствол.
В боковых рогах спинного мозга на уровне С8-Т2 находится цилиоспинальный центр Будге, от которого берет начало шейный симпатический нерв. Преганглионарные симпатические волокна от этого центра направляются к верхнему шейному симпатическому узлу. От него постганглионарные волокна поднимаются вверх, образуют симпатическое сплетение сонной артерии, глазничной артерии (a. ophtalmica), далее проникают в орбиту, где иннервируют гладкие мышцы глаза. При поражении боковых рогов на этом уровне или шейного симпатического нерва возникает синдром Бернара-Горнера. Последний характеризуется частичным птозом (сужение глазной щели), миозом (сужение зрачка) и энофтальмом (западение глазного яблока). Раздражение симпатических волокон приводит к возникновению противоположного синдрома Пурфюр дю Пти: расширение глазной щели, мидриаз, экзофтальм.
Симпатические волокна, которые начинаются от звездчатого узла (шейно-грудной узел, gangl. stellatum), образуют сплетение позвоночной артерии и симпатическое сплетение в сердце. Они обеспечивают иннервацию сосудов вертебрально-базилярного бассейна, а также дают ветки к сердцу и гортани. Грудной отдел симпатического ствола дает ветви, которые иннервируют аорту, бронхи, легкие, плевру, органы брюшной полости. От поясничных узлов симпатические волокна направляются к органам и сосудам малого таза. На конечностях симпатические волокна идут вместе с периферическими нервами, распространяясь в дистальных отделах вместе с мелкими артериальными сосудами.
Парасимпатическая часть вегетативной нервной системы делится на краниобульбарный и сакральный отделы. Краниобуль-барный отдел представлен нейронами ядер мозгового ствола: III, УП, IX, X пар черепных нервов. Вегетативные ядра глазодвигательного нерва - добавочное (ядро Якубовича) и центральное заднее (ядро Перлиа) находятся на уровне среднего мозга. Их аксоны в составе глазодвигательного нерва идут к ресничного узлу (gangl. ciliarae), который находится в заднем отделе орбиты. От него постганглионарные волокна в составе коротких цилиарных нервов (nn. ciliaris brevis) иннервируют гладкие мышцы глаза: мышцу, суживающую зрачок (m. sphincter pupillae), и ресничную мышцу (т. ciliaris), сокращение которой обеспечивает аккомодацию.
В области моста находятся секреторные слезовыделительные клетки, аксоны которых в составе лицевого нерва идут к крылонебному узлу (gangl. pterygopalatinum) и иннервируют слезную железу. В стволе мозга также локализуются верхнее и нижнее секреторные слюновыделительные ядра, аксоны от которых идут с языкоглоточным нервом к околоушному узлу (gangl. oticum) и с промежуточным нервом к подчелюстному и подъязычному узлам (gangl. submandibularis, gangl. sublingualis) и иннервируют соответствующие слюнные железы.
На уровне продолговатого мозга находится заднее (вис-церальное) ядро блуждающего нерва (nucl. dorsalis n.vagus), парасимпатические волокна которого иннервируют сердце, пищеварительный канал, желудочные железы и другие внутренние органы (кроме органов малого таза).
Схема эфферентной парасимпатической иннервации:
1 - парасимпатические ядра глазодвигательного нерва; 2 - верхнее слюноотделительное ядро; 3 - нижнее слюноотделительное ядро; 4 - заднее ядро блуждающего нерва; 5 - боковое промежуточное ядро крестцового отдела спинного мозга; б - глазодвигательный нерв; 7 - лицевой нерв; 8 - языкоглоточ-ный нерв; 9 - блуждающий нерв; 10 - тазовые нервы; 11 - ресничный узел; 12 - крылонебный узел; 13 - ушной узел; 14 - подчелюстной узел; 15 - подъязычный узел; 16 - узлы легЛного сплетения; 17 - узлы сердечного сплетения; 18 - брюшные узлы; 19 - узлы желудочного и кишечного сплетений; 20 - узлы тазового сплетения.
На поверхности или внутри внутренних органов находятся внутриор-ганные нервные сплетения (метасимпатический отдел вегетативной нервной системы), которые выполняют роль коллектора - переключают и трансформируют все импульсы, которые поступают к внутренним органам и адаптируют их деятельность к наступившим изменениям, т. е. обеспечивают адаптационные и компенсаторные процессы (например, после операции).
Сакральная (крестцовая) часть вегетативной нервной системы представлена клетками, которые размещаются в боковых рогах спинного мозга на уровне S2-S4 сегментов (боковое промежуточное ядро). Аксоны этих клеток формируют тазовые нервы (nn. pelvici), которые иннервируют мочевой пузырь, прямую кишку и половые органы.
Симпатическая и парасимпатическая часть вегетативной нервной системы осуществляет противоположное влияние на органы: расширение или сужение зрачка, ускорение или замедление сердцебиения, противоположные изменения секреции, перистальтики, и т. п. Усиление активности одного отдела в физиологических условиях ведет к компенсаторному напряжению другого. Это возвращает функциональную систему к исходному состоянию.
Отличия между симпатическим и парасимпатическим отделами вегетативной нервной системы следующие:
1. Парасимпатические ганглии находятся вблизи или в самих органах, которые они иннервируют, а симпатические ганглии - на значительном расстоянии от них. Поэтому постганглионарные волокна симпатической системы имеют значительную протяженность и при их раздражении клиническая симптоматика не локальная, а диффузная. Проявления патологии парасимпатической части вегетативной нервной системы более локальные, часто охватывают лишь один орган.
2. Разный характер медиаторов: медиатором преганглионарных волокон обеих отделов (симпатического и парасимпатического) является ацетилхо-лин. В синапсах постганглионарных волокон симпатической части выделяется симпатии (смесь адреналина и норадреналина), парасимпатического -ацетилхолин.
3. Парасимпатический отдел эволюционно более древний, он осуществляет трофотропную функцию и более автономный. Симпатический отдел более новый, выполняет приспособительную (эрготропную) функцию. Он менее автономный, зависит от функции центральной нервной системы, эндокринной системы и других процессов.
4. Сфера функционирования парасимпатической части вегетативной нервной системы более ограничена и касается в основном внутренних органов; симпатические волокна обеспечивают иннервацию всех органов и тканей организма.
Надсегментарный отдел вегетативной нервной системы не подразделяется на симпатическую и парасимпатическую часть. В структуре над-сегментарного отдела выделяют эрготропные и трофотропные и системы, предложенные английским исследователем Гедом. Эрготропная система усиливает свою деятельность в моменты, требующие от организма определенного напряжения, активной деятельности. В этом случае повышается АД, расширяются коронарные артерии, учащается пульс, увеличивается частота дыхания, расширяются бронхи, усиливается легочная вентиляция, уменьшается перистальтика кишок, суживаются сосуды почек, расширяются зрачки, повышается возбудимость рецепторов и внимание. Организм готовый к защите или к сопротивлению. Для реализации этих функций эрготропная система включает в основном сегментарные аппараты симпатической части вегетативной нервной системы. В таких случаях в процесс включаются и гуморальные механизмы - в кровь выбрасывается адреналин. Больше всего этих центров располагается в лобных и теменных долях. Например, моторные центры иннервации гладких мышц, внутренних органов, сосудов, потоотделения, трофики, обмена веществ находятся в лобных долях мозга (поля 4,6,8). Иннервация органов дыхания связана с корой островка, органов брюшной полости - с корой постцентральной извилины (поле 5).
Трофотропная система оказывает содействие поддержанию внутреннего равновесия, гомеостаза. Она обеспечивает пищевые функции. Деятельность трофотропной системы связана с состоянием покоя, отдыха, сна, процессами пищеварения. В таком случае замедляется сердечный ритм, дыхание, снижается АД, суживаются бронхи, усиливается перистальтика кишок и секреция пищеварительных соков. Действия трофотропной системы реализуются через образования сегментарного отдела парасимпатической части вегетативной нервной системы.
Деятельность обеих этих функций (эрго- и трофотропной) протекает синергически. В каждом конкретном случае можно отметить преобладание одной из них, а от их функционального соотношения зависит адаптация организма к меняющимся условиям окружающей среды.
Надсегментарные вегетативные центры находятся в коре полушарий большого мозга, подкорковых структурах, мозжечке и стволе мозга. Например, такие вегетативные центры, как иннервации гладких мышц, внутренних органов, сосудов, потоотделения, трофики, обмена веществ находятся в лобных долях мозга. Особое место среди высших вегетативных центров занимает лимбико-ретикулярный комплекс.
Лимбическая система представляет собой комплекс структур мозга, к которому относятся: кора задней и медиобазальной поверхности лобной доли, обонятельный мозг (обонятельная луковица, обонятельные пути, обонятельный бугор), гиппокамп, зубчатая, поясная извилины, ядра перегородки, передние ядра таламуса, гипоталамус, миндалевидное тело. Лимбическая система теснейшим образом связана с ретикулярной формацией ствола мозга. Поэтому все эти образования и их связи получили название лимбико-ретикулярного комплекса. Центральной частью лимбической системы являются обонятельный мозг, гиппокамп и миндалевидное тело. Весь комплекс структур лимбической системы, несмотря на их филогенетические и морфологические отличия, обеспечивает целостность многих функций организма. На этом уровне происходит первичный синтез всей чувствительности, анализ состояния внутренней среды, формируются элементарные потребности, мотивации, эмоции. Лимбическая система обеспечивает интегративные функции, взаимодействие всех систем мозга двигательных, сенсорных, вегетативных. От ее состояния зависят уровень сознания, внимания, память, способность ориентироваться в пространстве, двигательная и психическая активность, возможность выполнять автоматизированные движения, речь, состояние бодрости или сна.
Значительное место среди подкорковых структур лимбической системы отводится гипоталамусу. Он регулирует функцию пищеварения, дыхания, сердечно-сосудистой, эндокринной систем, метаболизм, терморегуляцию.
Обеспечивает постоянство показателей внутренней среды (АД, уровень глюкозы в крови, температура тела, концентрация газов, электролиты и т. п.), т. е. является основным центральным механизмом регуляции гомеоста-за, обеспечивает регуляцию тонуса симпатического и парасимпатического отделов вегетативной нервной системы. Благодаря связям со многими структурами центральной нервной системы, гипоталамус осуществляет интеграцию соматической и вегетативной функций организма. Причем связи эти осуществляются по принципу обратной связи, двустороннего контроля.
Важную роль среди структур надсегментарного отдела вегетативной нервной системы играет ретикулярная формация ствола мозга. Она имеет самостоятельное значение, но является составляющей лимбико-ретикулярного комплекса - интегративного аппарата мозга. Ядра ретикулярной формации (их около 100) формируют надсегментарные центры жизненно важных функций: дыхания, сосудодвигательный, сердечной деятельности, глотания, рвоты и т. п. Кроме того, она контролирует состояние сна и бодрствования, фазический и тонический тонус мышц, расшифровывает информационные сигналы из окружающей среды. Взаимодействие ретикулярной формации с лимбической системой обеспечивает организацию целесообразного поведения человека к меняющимся условиям окружающей среды.
Оболочки головного и спинного мозга
Головной и спинной мозг покрыты тремя оболочками: твердой (dura mater encephali), паутинной (arachnoidea encephali) и мягкой (pia mater encephali).
Твердая оболочка головного мозга состоит из плотной волокнистой ткани, в которой различают внешнюю и внутреннюю поверхности. Ее внешняя поверхность хорошо васкуляризована и непосредственно соединена с костями черепа, выполняя роль внутренней надкостницы. В полости черепа твердая оболочка образует складки (дубликатуры), которые принято называть отростками. Различают такие отростки твердой мозговой оболочки:
· серп большого мозга (falx cerebri), находящийся в сагиттальной плоскости между полушариями головного мозга;
· серп мозжечка (falx cerebelli), расположенный между полушариями мозжечка;
· намет мозжечка (tentorium cerebelli), натянутый в горизонтальной плоскости над задней черепной ямкой, между верхним углом пирамиды височной кости и поперечной бороздой затылочной кости и отграничивает затылочные доли большого мозга от верхней поверхности полушарий мозжечка;
· диафрагма турецкого седла (diaphragma sellae turcicae); этот отросток натянут над турецким седлом, он образует его потолок (operculum sellae).
Между листками твердой мозговой оболочки и ее отростками находятся полости, собирающие кровь из мозга и называемые синусами твердой оболочки (sinus dures matris).
Различают следующие синусы:
· верхний сагиттальный синус (sinus sagittalis superior), через который кровь выводится в поперечный синус (sinus transversus). Он находится вдоль выпяченной стороны верхнего края большого серповидного отростка;
· нижний сагиттальный синус (sinus sagittalis inferior) лежит вдоль нижнего края большого серповидного отростка и вливается в прямую пазуху (sinus rectus);
· поперечный синус (sinus transversus) содержится в одноименной борозде затылочной кости; огибая сосцевидный угол теменной кости, он переходит в сигмовидную пазуху (sinus sigmoideus);
· прямой синус (sinus rectus) проходит вдоль линии соединения большого серповидного отростка с наметом мозжечка. Вместе с верхним сагиттальным синусом он выводит венозную кровь в поперечную пазуху;
· пещеристый синус (sinus cavernosus) находится по бокам от турецкого седла. На поперечном срезе он имеет вид треугольника. В нем выделяют три стенки: верхнюю, внешнюю и внутреннюю. В верхней стенке проходят глазодвигательный нерв (п. oculomotorius) и блоковидный нерв (п. trochlearis), в боковой - первая ветвь тройничного нерва - глазной нерв (п. ophtalmicus). Между блоковидным и глазным нервами лежит отводящий нерв (п. abducens). Внутри пещеристого синуса расположена внутренняя сонная артерия (a. carotis interna) со своим симпатическим сонным сплетением (plexus caroticus), которое омывается венозной кровью. В полость синуса впадает верхняя глазная вена (v. ophthalmica superior). Правый и левый пещеристые синусы соединены между собой анастомозами, образовывая в передних отделах диафрагмы турецкого седла передний межпещеристый синус (sinus intercavernosus anterior), а в задних отделах диафрагмы - задний межпещеристый синус (sinus intercavernosus posterior). Такой большой синус кольцевидной формы называется циркулярным синусом (sinus circularis). Он окружает нижний придаток (hipophisis cerebri), который находится в турецком седле;
· верхний каменистый синус (sinus petrosus superior) является продолжением пещеристого синуса и проходит вдоль верхнего края пирамиды височной кости, соединяя пещеристый синус с поперечным;
· нижний каменистый синус (sinus petrosus inferior) выходит из пещеристой пазухи, находится в нижней каменистой борозде между скатом затылочной кости и пирамидой височной кости. Основное венозное сплетение (plexus venosus basilaris) находится на клинообразной кости, теле затылочной кости и образуется путем слияния нескольких поперечных соединительных венозных ветвей между обеими нижними каменистыми синусами;
· затылочный синус (sinus occipitalis) лежит вдоль внутреннего затылочного выступа (гребня). Он выходит из поперечного синуса, разделяется на две ветви, которые охватывают края затылочного отверстия и вливаются в сигмовидный синус. В том месте, где соединяются sinus transversus, sagittalis superior, restus и occipitalis, образуется венозное расширение - слияние синусов (confluens sinuum).
Основным путем оттока венозной крови из синусов являются внутренние яремные вены (v. jugularis internae).
Твердая оболочка головного мозга иннервируется оболочковыми ветвями тройничного и блуждающего нервов и симпатическими ветвями от периартериальных сплетений (средней артерии твердой мозговой оболочки и позвоночной артерии, а также пещеристого сплетения), большого каменистого нерва и ушного узла.