Зависимость переходного сопротивления от свойств материала контактов
В электрических контактах ток проходит только через небольшую часть кажущейся контактной поверхности, и, следовательно, он должен испытывать сопротивление при прохождении через зону контакта.
Рассмотрим однородный линейный проводник постоянного поперечного сечения (рис. 2.3), по которому протекает постоянный ток I. Между точками а и б, находящимися на расстоянии l, измерим разность потенциалов U1. Тогда активное сопротивление участка проводника R1 = U1/I.
Рис. 2.3. К определению переходного сопротивления контактов: а - проводник;
б - проводник с контактом.
Разрежем проводник в средней части l и затем снова соединим его, сжав силой Р. При протекании того же тока I получим разность потенциалов между точками а и б равную U2и отличную от разности потенциалов U1. В этом опыте сопротивление R2 = U2/I. Разность сопротивлений Rпер = R2 – R1 называется переходным сопротивлением контакта.
Следует отметить, что если на некотором удалении от -пятна линии тока параллельны друг другу, то в непосредственной близости от него они искривляются и «стягиваются» к -пятну. Область электрического контакта, где линии тока искривляются, стягиваясь к -пятну, называется областью стягивания.
В областях стягивания поперечное сечение проводника используется не полностью для протекания электрического тока, что и приводит к появлению дополнительного сопротивления. Это сопротивление называется сопротивлением стягивания.
Переходное сопротивление контакта зависит от обработки поверхности. Шлифовка ведёт к тому, что на поверхности остаются более пологие выступы с большим сечением. Смятие таких выступов затруднено, поэтому сопротивление шлифованных контактов выше, чем контактов с более грубой обработкой.
Наличие окисных плёнок приводит к тому, что при небольшом напряжении замыкаемой цепи или недостаточной силе нажатия на контакты протекание электрического тока становится невозможным. В связи с этим контакты на малые токи или на малые усилия нажатия изготовляются из благородных металлов, не поддающихся окислению (золото, платина и др.).
В сильноточных (сильнотоковых) контактах окисная плёнка разрушается либо благодаря большим усилиям нажатия, либо путём самозачистки при включении за счёт проскальзывания одного контакта относительно другого.
Переходное сопротивление чрезвычайно чувствительно к окислению поверхности ввиду того, что окислы многих металлов (в частности, меди) являются плохими проводниками. У медных открытых контактов вследствие их окисления с течением времени переходное сопротивление может возрасти в тысячи раз.
В процессе длительного пребывания под током на поверхности замкнутых контактов также возникают окисные, плохо проводящие ток плёнки. Они проникают к площадкам контактирования и, увеличивая тем самым переходное сопротивление, могут вывести контакты из строя. Повышение температуры ускоряет степень окисления поверхности контактов. Повышение силы контактного нажатия, наоборот, затрудняет проникновение окисных плёнок к площадкам контактирования, повышая тем самым срок службы контактов.
Окислы серебра имеют электрическую проводимость, близкую к проводимости чистого серебра. При повышенных температурах окислы серебра разрушаются. Поэтому переходное сопротивление контактов из серебра практически не изменяется с течением времени. Оно даже может понизиться вследствие медленной пластической деформации материала в площадках контактирования. Для медных контактов применяются специальные меры по уменьшению окисления их рабочих поверхностей.
В разборных соединениях производят антикоррозионные покрытия рабочих поверхностей – серебрят, лудят, покрывают кадмием, никелируют и цинкуют. Применяют покрытие рабочих поверхностей нейтральной смазкой после их технического обслуживания.
Коммутирующие контакты, длительно работающие под током не выключаясь, выполняются, как правило, из серебра или металлокерамики на основе серебра. Для медных контактов снижается значение тока нагрузки по сравнению с допустимым значением. Тем самым снижаются нагрев контактов и интенсивность их окисления.
Возникающая при отключении дуга сжигает окислы, и переходное сопротивление снижается. Во многих аппаратах кинематическая схема предусматривает при замыкании некоторое проскальзывание одного контакта по другому. Образовавшаяся окисная пленка при этом разрушается.
Материалы большей твердости имеют большее переходное сопротивление и требуют большего контактного нажатия. Чем выше электрическая проводимость и теплопроводность материала, тем ниже переходное сопротивление.