Пути повышения прочности, и пластичности, металла

Разрушение металлов

Сверхпластичность. Виды, определение, способы получения.

 

При достаточно высоких напряжениях процесс деформации заканчивается разрушением. Разрушение состоит из двух стадий - зарождения трещины и ее распространения через все сечение образца (изделия). Возникновение микротрещины чаще всего происходит благодаря скоплению движущихся дислокации перед препятствием (границы субзерен, зерен, межфазные границы, всевозможные включения и т. д.), что приводит к концентрации напряжений, достаточных для образования микротрещины.

Разрушение может быть хрупким и вязким.Вязкое разрушение происходит со значительной пластической деформацией; при хрупком разрушении пластическая деформация мала.

Вязкое разрушение обусловлено малой скоростью распространения трещины. Скорость распространения хрупкой трещины велика - близка к скорости звука. Поэтому нередко хрупкое разрушение называют "внезапным" или "катастрофическим" разрушением. Вязкому разрушению соответствует большая работа распространения трещины. При хрупком разрушении работа распространения трещины близка к нулю.

По виду микроструктуры различают разрушение транскристаллитное и интеркристаллитное. При транскристаллитном разрушении трещина распространяется по телу зерна, а при интеркристаллитном она проходит по границам зерен.

 

 

Увеличение прочности металла повышает надежность и долговечность машин (конструкций) и понижает расход металла на их изготовление вследствие уменьшения сечения деталей машин. Реально достигнутая прочность металла (техническая прочность) значительно ниже теоретической.

Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны бы иметь материалы согласно физическим расчетам сил сцепления в твердых телах. Низкая прочность (сопротивление деформации) металлаобъясняется легкой подвижностью дислокации. Следовательно, для повышения прочности или необходимо устранить дислокации или повысить сопротивление их движению. Сопротивление их движению дислокации возрастает при взаимодействии их друг с другом и с различного рода другими дефектами кристаллической решетки, создаваемыми при обработке металла.

Дефекты решетки оказывают на сопротивление металла деформации двоякое влияние. С одной стороны, образование в металле дислокации ослабляет металл. С другой стороны, дефекты кристаллического строения упрочняют его, так как препятствуют свободному перемещению дислокации.

Минимальная прочность определяется некоторой критической плотностью дислокации А, приближенно оцениваемой – 106-108 см-2. Эта величина относится к отожженным металлам. Если количество дефектов (плотность дислокации) не превышает величины А, то уменьшение их содержания резко увеличивает сопротивление деформации. Прочность в этом случае быстро приближается к теоретической.

В настоящее время удалось получить кристаллы размером 2-10 мм и толщиной от 0, 5 до 2, 0 мкм, практически лишенные дефектов кристаллической решетки (дислокации). Эти нитевидные кристаллы, названные английскими учеными "усами" (whisker), обладают прочностью, близкой к теоретической. Отсутствие дефектов в усах объясняется условиями их роста и малыми размерами. Увеличение размера усов сопровождается резким снижением прочности. При толщине более 0, 25 мкм усы железа по прочности не отличаются от технического железа.