ЭКОЛОГИЧЕСКАЯ МИКРОБИОЛОГИЯ
КЛИНИЧЕСКАЯ И
Одесса-2010
Лекция № 21. Предмет и задачи медицинской вирусологии. Общая характеристика вирусов
Мы приступаем к изучению новой науки - вирусологии, науки о вирусах. Вирусология - самостоятельная наука современного естествознания, занимающая авангардное положение в биологии и медицине, причем роль и значение вирусологии неуклонно возрастает. Это обусловлено рядом обстоятельств:
1. Вирусные болезни занимают ведущее место в инфекционной патологии человека. Применение антибиотиков позволяет эффективно решать вопросы терапии большинства бактериальных заболеваний, в то время как для лечения вирусных болезней до сих пор нет достаточно эффективных и безвредных препаратов. По мере снижения заболеваемости бактериальными инфекциями удельный вес вирусных болезней неуклонно растет. Остро стоит проблема массовых вирусных инфекций - респираторных и кишечных. Например, всем известный грипп часто принимает характер массовых эпидемий и даже пандемий, при которых заболевает значительный процент населения земного шара.
2. Получила признание, и все больше подтверждается вирусо-генетическая теория происхождения опухолей и лейкозов. Поэтому мы ожидаем, что на пути развития вирусологии лежит решение важнейшей проблемы патологии человека - проблемы канцерогенеза.
3. В настоящее время появляются новые или становятся остроактуальными ранее известные вирусные заболевания, что постоянно ставит перед вирусологией новые задачи. Примером может служить ВИЧ-инфекция.
4. Вирусы стали классической моделью для молекулярно-биологических и молекулярно-генетических исследований. С использованием вирусов решаются многие вопросы фундаментальных исследований в биологии, вирусы широко применяются в биотехнологии.
5. Вирусология - фундаментальная наука современного естествознания не только потому, что она обогащает другие науки новыми методами и новыми представлениями, но и потому, что предметом изучения вирусологии является качественно особая форма организации живой материи - вирусы, кардинально отличающиеся от всех остальных живых существ на Земле.
2. ИСТОРИЧЕСКИЙ ОЧЕРК РАЗВИТИЯ ВИРУСОЛОГИИ
Заслуга открытия вирусов и описания их основных признаков принадлежит российскому ученому - Дмитрию Иосифовичу Ивановскому (1864-1920). Интересно, что свои исследования Ивановский начал еще студентом 3 курса Петербургского университета, когда выполнял курсовую работу на Украине и в Бессарабии. Он изучал мозаичную болезнь табака и выяснил, что это инфекционное заболевание растений, но возбудитель его не относится ни к одной из известных тогда групп микроорганизмов. Позднее, уже будучи дипломированным специалистом, Ивановский продолжает исследования в Никитском ботаническом саду (Крым) и ставит классический эксперимент: он фильтрует сок листьев пораженного растения через бактериальный фильтр и доказывает, что инфекционная активность сока не исчезает.
Ивановский впервые описал основные свойства открытого им возбудителя мозаичной болезни табака - малые размеры (фильтруемость), абсолютный паразитизм, способность размножаться и накапливаться при пассировании через организм хозяина. Голландский исследователь М.Бейеринк в 1898 г. повторил опыты Ивановского, но полагал, что им открыт своеобразный живой растворенный возбудитель - contagium vivum fluidum. В полемике с Бейеринком Ивановский доказал, что открытый им инфекционный агент имеет корпускулярную природу. Таким образом, Д.Ивановский отметил главные отличительные признаки вирусов, которые долгое время служили ориентиром для доказательства вирусной природы возбудителя.
В дальнейшем были открыты основные группы вирусов. В 1898 г. Ф.Леффлер и П.Фрош доказали фильтруемость возбудителя ящура (вирус ящура поражает животных и людей), в 1911 г. П.Раус доказал фильтруемость возбудителя опухолевого заболевания - куриной саркомы, в 1915 г. Ф.Творт и в 1917 г. Д’Эрелль открыли фаги - вирусы бактерий.
Так были открыты основные группы вирусов. В настоящее время известно более 500 видов вирусов.
Дальнейший прогресс в развитии вирусологии связан с разработкой методов культивирования вирусов. Вначале изучение вирусов шло только при заражении чувствительных организмов. Значительный шаг вперед - разработка метода культивирования вирусов в куриных эмбрионах Вудруффом и Гудпасчуром в 1931 г. Революция в вирусологии - разработка метода культивирования вирусов в однослойных культурах клеток Дж.Эндерсом, Т.Уэллером, Ф.Роббинсом, и в 1948 г. Недаром в 1952 г. это открытие было удостоено Нобелевской премии.
Уже в 30 - х годах были созданы первые вирусологические лаборатории. В настоящее время на Украине имеется Одесский научно-исследовательский институт эпидемиологии и вирусологии им. И.И.Мечникова, есть вирусологические лаборатории в ряде НИИ эпидемиологии, микробиологии, инфекционных болезней. Работают вирусологические лаборатории практического здравоохранения, которые преимущественно занимаются диагностикой вирусных заболеваний.
3. Состави ультраструктура вирусов
Прежде всего нужно сказать, что термин «вирус» был введен в научную терминологию еще Л.Пастером. Л.Пастер в 1885 г. получил свою вакцину для профилактики бешенства, хотя и не обнаружил возбудителя этого заболевания - до открытия вирусов оставалось еще 7 лет. Л.Пастер назвал гипотетического возбудителя вирусом бешенства, что в переводе означает «яд бешенства».
Термин «вирус» применяется для обозначения любой стадии развития вируса - и внеклеточно расположенных инфекционных частиц, и внутриклеточно репродуцирующийся вирус. Для обозначения вирусной частицы используют термин «вирион».
По химическому составу вирусы в принципе похожи на остальные микроорганизмы, они имеют нуклеиновые кислоты, белки, некоторые - также липиды и углеводы.
Вирусы содержат только один тип нуклеиновой кислоты - либо ДНК, либо РНК. Соответственно выделяют ДНК-геномные и РНК-геномные вирусы. Нуклеиновой кислоты в вирионе может содержаться от 1 до 40 %. Обычно в составе вириона имеется лишь одна молекула нуклеиновой кислоты, нередко замкнутая в кольцо. Вирусные нуклеиновые кислоты мало чем отличаются от нуклеиновых кислот эукариотов, они состоят из тех же нуклеотидов и имеют такую же структуру. Правда, вирусы могут содержать не только двухспиральную, но и односпиральную ДНК. Некоторые РНК-овые вирусы могут содержать двухспиральную РНК, хотя большинство содержат односпиральную РНК. Следует отметить, что вирусы могут содержать плюс-нить РНК, способную выполнять функцию матричной РНК, но могут содержать и минус-нитевую РНК. Такая РНК может выполнять свою генетическую функцию только после синтеза в клетке комплементарной плюс-нити. Еще одна особенность нуклеиновых кислот вирусов - у некоторых вирусов нуклеиновая кислота обладает инфекциозностью. Это означает, что если выделить из вируса, например - вируса полиомиелита, РНК без примеси белка и ввести ее в клетку, то будет развиваться вирусная инфекция с образованием новых вирусных частиц.
Белки содержатся в составе вирусов в количестве 50-90 %, они обладают антигенными свойствами. Белки входят в состав оболочечных структур вириона. Кроме того, есть внутренние белки, связанные с нуклеиновой кислотой. Некоторые вирусные белки являются ферментами. Но это не ферменты, обеспечивающие обмен веществ вирусов. Вирусные ферменты участвуют в проникновении вируса в клетку, выходе вируса из клетки, некоторые из них необходимы для репликации вирусных нуклеиновых кислот.
Липоидов может быть от 0 до 50 %, углеводов - 0 - 22 %. Липиды и углеводы входят в состав вторичной оболочки сложных вирусов и не являются вирусоспецифическими. Они заимствуются вирусом у клетки и являются поэтому клеточными.
Отметим кардинальное отличие химического состава вирусов - наличие только одного типа нуклеиновой кислоты, ДНК или РНК.
Ультраструктура вирусов- это строение вирионов. Размеры вирионов различны и измеряются в нанометрах. 1 нм составляет тысячную долю микрометра. Самые мелкие типичные вирусы (вирус полиомиелита) имеют в диаметре около 20 нм, самые крупные (вирус натуральной оспы) - 200-250 нм. Средние вирусы имею размеры 60 - 120 нм. Мелкие вирусы можно увидеть только в электронном микроскопе, крупные находятся на границе разрешающей способности светового микроскопа и видны в темном поле зрения либо при специальной окраске, увеличивающей размеры частиц. Отдельные вирусные частицы, различимые в световой микроскоп, обычно называются элементарными тельцами Пашена-Морозова. Э.Пашен обнаружил вирус натуральной оспы при специальной окраске, а Морозов предложил метод серебрения, позволяющий увидеть в световом микроскопе даже вирусы средних размеров.
Форма вирионов может быть различной - сферической, кубоидальной, палочковидной, сперматозоидоподобной.
Каждый вирион состоит из нуклеиновой кислоты, которая у вирусов составляет «нуклеон». Сравните - нуклеус у эукариот, нуклеоид - у прокариот. Нуклеон обязательно связан с первичной белковой оболочкой - капсидом, состоящим из белковых капсомеров. В результате образуется нуклеопротеид - нуклеокапсид. Простые вирусы состоят только из нуклеокапсида (вирусы полиомиелита, вирус мозаичной болезни табака). Сложные вирусы имеют еще вторичную оболочку - суперкапсид, содержащий помимо белков также и липиды и углеводы.
Объединение структурных элементов в вирионе может быть различным. Выделяют три типа симметрии вирусов - спиральный, кубический и смешанный. Говоря о симметрии подчеркивается симметричность вирусных частиц относительно оси.
При спиральном типе симметрии отдельные капсомеры, различимые в электронном микроскопе, укладываются по ходу спирали нуклеиновой кислоты так, что нить проходит между двумя капсомерами, охватывающими ее со всех сторон. В результате образуется палочковидная структура, как например у вируса табачной мозаики, имеющего форму палочки. Но не обязательно вирусы со спиральным типом симметрии должны быть палочковидными. Например, вирус гриппа хотя и имеет спиральный тип симметрии, но его нуклеокапсид свертывается определенным образом и одевается суперкапсидом. В результате вирионы гриппа имеют обычно сферическую форму.
При кубическом типесимметрии нуклеиновая кислота свертывается определенным образом в центре вириона, а капсомеры покрывают нуклеиновую кислоту снаружи, образуя объемную геометрическую фигуру. Чаще всего образуется фигура икосаэдра, многогранника с определенным соотношением числа вершин и граней. Такую форму имеют, например, вирусы полиомиелита. В профиль вирион имеет форму шестиугольника. Более сложной формы аденовирус, также кубического типа симметрии. Из вершин многогранника отходят длинные нити, фибры, заканчивающиеся утолщением.
При смешанном типе симметрии, например - у бактериофагов, головка с кубическим типом симметрии имеет форму икосаэдра, а отросток содержит спирально закрученную сократительную фибриллу.
Некоторые вирусы имеют более сложное строение. Например, вирус натуральной оспы содержит значительных размеров нуклеокапсид со спиральным типом симметрии, а суперкапсид устроен сложно, в нем обнаруживается система трубчатых структур.
Таким образом, вирусы устроены достаточно сложно. Но мы должны отметить, что вирусы не имеют клеточной организации. Вирусы - неклеточные существа, и это является одним из их кардинальных отличий от остальных организмов.
Несколько слов об устойчивости вирусов. Большинство вирусов инактивируется при 56 - 60 °С в течение 5 - 30 мин. Вирусы хорошо переносят охлаждение, при комнатной температуре большинство вирусов быстро инактивируется. Вирус более, чем бактерии, устойчивы к ультрафиолетовому облучению и ионизирующей радиации. Вирусы устойчивы к глицерину. Антибиотики вообще не действуют на вирусы. Из дезинфицирующих веществ наиболее эффективным является 5 % лизол, большинство вирусов погибает в течение 1 - 5 мин.
4. РЕПРОДУКЦИЯ ВИРУСОВ
Обычно мы не употребляем термин «размножение вирусов», а говорим «репродукция», воспроизводство вирусов, так как способ размножения вирусов кардинально отличается от способа размножения всех известных нам организмов.
Для лучшего изучения механизма репродукции вирусов предлагаем Вам таблицу, которая отсутствует в учебных пособиях, но помогает разобраться в этом сложном процессе.
этапы репродукции вирусов
Начальный (подготовительный) период | Средний (латентный) период | Конечный(заключительный) период |
1. Адсорбция вируса на клетке 2. Проникновение вируса в клетку 3. Депротеинизация вирусной нуклеиновой кислоты | 1. Транскрипция вирусного генома (синтез информационной РНК) 2. Трансляция (синтез вирусспецифических ферментов и вирусных структурных белков) 3. Репликация вирусного генома (синтез вирусных нуклеиновых кислот) | 1. Сборка вирионов 2. Выход вируса из клетки |
Первый, подготовительный период, начинается этапом адсорбции вируса на клетке. Процесс адсорбции осуществляется за счет комплементарного взаимодействия прикрепительных белков вируса с клеточными рецепторами. Клеточные рецепторы могут иметь гликопротеидную природу, гликолипидную, протеиновую и липидную природу. Для каждого вируса необходимы определенные клеточные рецепторы.
Вирусные прикрепительные белки, располагающиеся на поверхности капсида или суперкапсида, выполняют функцию вирусных рецепторов.
Взаимодействие вируса и клетки начинается с неспецифической адсорбции вириона на клеточной мембране, а затем происходит специфическое взаимодействие вирусных и клеточных рецепторов по принципу комплементарности. Поэтому процесс адсорбции вируса на клетке является специфическим процессом. Если в организме нет клеток с рецепторами к определенному вирусу, то инфекция этим видом вируса в таком организме невозможна - имеется видовая резистентность. С другой стороны, если бы нам удалось блокировать этот первый этап взаимодействия вируса с клеткой, то мы могли бы предупреждать развитие вирусной инфекции на самом раннем этапе.
2-й этап - проникновение вируса в клетку - может происходить двумя основными путями. Первый, который был описан раньше, называетсявиропексисом. Этот путь очень напоминает фагоцитоз и является вариантом рецепторного эндоцитоза. Вирусная частица адсорбируется на клеточной мембране, в результате взаимодействия рецепторов меняется состояние мембраны, и она инвагинируется, как бы обтекая вирусную частицу. Образуется вакуоль, отграниченная клеточной мембраной, в центре которой располагается вирусная частица.
При проникновении вируса путемслияния мембран происходит взаимное проникновение элементов оболочки вируса и клеточной мембраны. В результате “сердцевина” вириона оказывается в цитоплазме зараженной клетки. Этот процесс происходит довольно быстро, поэтому его трудно было зарегистрировать на электронограммах.
Депротеинизация -освобождение вирусного генома от суперкапсида и капсида. Этот процесс называют иногда «раздеванием» вирионов.
Освобождение от оболочек начинается нередко сразу же после прикрепления вириона к клеточным рецепторам и продолжается уже внутри цитоплазмы клетки. В этом принимают участие лизосомальные ферменты. В любом случае для осуществления дальнейшей репродукции необходима депротеинизация вирусной нуклеиновой, так как без этого вирусный геном не в состоянии индуцировать воспроизводство новых вирионов в зараженной клетке.
Средний период репродукции называютлатентным, скрытым, так как после депротеинизации вирус как бы «исчезает» из клетки, его невозможно обнаружить на электронограммах. В этом периоде присутствие вируса обнаруживается только по изменению метаболизма клетки-хозяина. Клетка перестраивается под влиянием вирусного генома на биосинтез компонентов вириона - его нуклеиновой кислоты и белков.
Первый этап среднего периода, транскрипция вирусных нуклеиновых кислот, переписывание генетической информации путем синтеза информационной РНК - необходимый процесс для начала синтеза вирусных компонентов. Она происходит по-разному в зависимости от типа нуклеиновой кислоты.
Вирусная двунитевая ДНК транскрибируется так же, как и клеточная с помощью ДНК-зависимой РНК-полимеразы. Если этот процесс осуществляется в ядре клетки (у аденовирусов), то используется клеточная полимераза. Если же в цитоплазме (вирус оспы) - то с помощью РНК-полимеразы, проникающей в клетку в составе вируса.
РНК-содержащие вирусы могут содержать плюс-нитевую РНК, в этом случае она самостоятельно выполняет функцию информационной РНК. При репродукции таких вирусов (пикорнавирусов, тогавирусов) нет необходимости выделять транскрипцию в качестве самостоятельного этапа.
Если же РНК является минус-нитевой (у вирусов гриппа, кори, бешенства), вначале должна синтезироваться информационная РНК на матрице вирусной РНК с помощью специального фермента - РНК-зависимой РНК-полимеразы, которая входит в состав вирионов и проникает в клетку вместе с вирусной РНК. Такой же фермент входит и в состав вирусов, содержащих двунитевую РНК (реовирусы).
Регуляция процесса транскрипции осуществляется путем последовательной перезаписи информации с «ранних» и «поздних» генов. В «ранних» генах записана информация о синтезе ферментов, необходимых для транскрипции генов и последующей их репликации. В «поздних» - информация для синтеза оболочечных белков вируса.
Трансляция- синтез вирусных белков. Этот процесс полностью аналогичен известной схеме биосинтеза белка. Участвует вирусспецифическая информационная РНК, клеточные транспортные РНК, рибосомы, митохондрии, аминокислоты. Вначале синтезируются белки-ферменты, необходимые для процесса транскрипции, а также для частичного или полного подавления метаболизма зараженной клетки. Некоторые вирусспецифические белки являются структурными и включаются в вирион (например - РНК-полимераза), другие - неструктурными, которые обнаруживаются только в инфицированной клетке и необходимы для одного из процессов репродукции вирионов.
Позднее начинается синтез вирусных структурных белков - компонентов капсида и суперкапсида.
После синтеза вирусных белков на рибосомах может происходить их посттрансляционная модификация, в результате которой вирусные белки «созревают» и становятся функционально активными. Клеточные ферменты могут осуществлять фосфорилирование, сульфирование, метилирование, ацилирование и другие биохимические превращения вирусных белков. Существенное значение имеет процесс протеолитического нарезания вирусных белков из крупномолекулярных белков-предшественников.
Репликациявирусного генома - синтез молекул вирусных нуклеиновых кислот, воспроизводство вирусной генетической информации.
Репликация вирусной двунитевой ДНК происходит с помощью клеточной ДНК-полимеразы по полуконсервативному типу так же, как и репликация клеточной ДНК. Однонитевая ДНК реплицируется через промежуточную репликативную двунитевую форму.
В клетке нет ферментов, способных осуществлять репликацию РНК. Поэтому такой процесс всегда осуществляется вирусспецифическими ферментами, информация о синтезе которых закодирована в вирусном геноме. При репликации однонитчатых РНК-вых геномов вначале синтезируется нить РНК, комплементарная вирусной, а затем эта вновьобразованная нить РНК становится матрицей для синтеза копий генома. При этом, в отличие от процесса транскрипции, при котором синтезируются часто лишь относительно короткие цепочки РНК, при репликации сразу образуется полная нить РНК. Двунитчатые РНК реплицируются аналогично двунитчатой ДНК, но с помощью соответствующего фермента - РНК-полимеразы вирусного происхождения.
В результате процесса репликации вирусного генома в клетке накапливаются фонды молекул вирусных нуклеиновых кислот, необходимых для формирования зрелых вирионов.
Таким образом, синтез отдельных компонентов вириона разобщен во времени и в пространстве, происходит в разных клеточных структурах и в разное время.
В конечный, заключительный период репродукции происходит сборка вирионов и выход вируса из клетки.
Сборка вирионов может происходить различно, но в основе её лежит процесс самосборки вирусных компонентов, транспортируемых из мест их синтеза в место сборки.. Первичная структура вирусных нуклеиновых кислот и белков определяет порядок конформирования молекул и их соединения друг с другом. Вначале образуется нуклеокапсид за счет строго ориентированного соединения белковых молекул в капсомеры и капсомеров с нуклеиновой кислотой. У простых вирусов на этом сборка и заканчивается. Сборка сложных вирусов, имеющих суперкапсид, многоступенчата и заканчивается обычно в процессе выхода вирионов из клетки. При этом элементы клеточной оболочки включаются в суперкапсид вируса.
Выход вируса из клеткиможет происходить двумя путями. Некоторые вирусы, лишенные суперкапсида (аденовирусы, пикорнавирусы) выходят из клетки по «взрывному» типу. Клетка при этом лизируется, а вирионы выходят из разрушенной клетки в межклеточное пространство. Другие вирусы, имеющие липопротеидную вторичную оболочку, например - вирусы гриппа, выходят из клетки, отпочковываясь с ее оболочки. Клетка при этом может длительно сохранять жизнеспособность.
Весь цикл репродукции вируса занимает обычно несколько часов. За 4 - 5 часов, проходящих от момента проникновения в клетку одной молекулы вирусной нуклеиновой кислоты, может образоваться от нескольких десятков до несколько сотен новых вирионов, способных инфицировать соседние клетки. Таким образом, распространение вирусной инфекции в клетках происходит очень быстро.
Таким образом, способ размножения вирусов коренным образом отличается от способа размножения всех остальных живых существ. Все клеточные организмы размножаются делением. При размножении вирусов отдельные компоненты синтезируются в разных местах инфицированной вирусом клетки и в разное время. Такой способ размножения получил название «разобщенный» или «дисъюнктивный».
Следует сказать, что взаимодействие вируса и клетки не обязательно может приводить к описанному результату - ранней или отсроченной гибели инфицированной клетки с продукцией массы новых зрелых вирусных частиц. Возможны три варианта вирусной инфекции в клетке.
Первый, нами уже разобранный вариант, происходит припродуктивной или вирулентной инфекции.
Второй вариант - персистирующая инфекция вируса в клетке, когда происходит очень медленная продукция новых вирионов с выходом их из клетки, но инфицированная клетка длительно сохраняет жизнеспособность.
Наконец, третий вариант - интегративный тип взаимодействия вируса и клетки, при котором происходит интеграция вирусной нуклеиновой кислоты в клеточный геном. При этом осуществляется физическое включение молекулы вирусной нуклеиновой кислоты в хромосому клетки-хозяина. Для ДНК-геномных вирусов этот процесс вполне понятен, РНК-геномные вирусы могут интегировать свой геном только в виде «провируса» - ДНК-овой копии вирусной РНК, синтезированной с помощью обратной транскриптазы - РНК-зависимой ДНК-полимеразы. В случае интеграции вирусного генома в клеточный вирусная нуклеиновая кислота реплицируется вместе с клеточной при делении клеток. Вирус в форме провируса может длительно сохраняться в клетке за счет постоянной репликации. Такой процесс получил название «вирогения».
Вирогения обеспечивает своеобразную форму сохранения вирусной генетической информации. С другой стороны, интеграция вирусного генома в клеточный может приводить к опухолевой трансформации пораженной клетки. По сути интегративный тип взаимодействия вируса и клетки является паразитированием вируса на генетическом уровне.
5. КАРДИНАЛЬНЫЕ ОСОБЕННОСТИ ВИРУСОВ
После открытия вирусов Д.И.Ивановским долгое время основными отличительными признаками вирусов считали их малые размеры, фильтруемость через бактериальные фильтры и абсолютный паразитизм, неспособность размножаться вне живой клетки.
Однако, размеры крупных вирусов соизмеримы с размерами хламидий и мелких риккетсий, описаны фильтрующиеся формы бактерий. В настоящее время практически не употребляется термин “фильтрующиеся вирусы”, который дологое время был обычным для обозначения вирусов. Поэтому малые размеры - некардинальное отличие вирусов от других живых существ.
Абсолютный паразитизм также присущ не только вирусам. Абсолютными паразитами являются хламидии, большинство риккетсий. Даже среди эукариот есть абсолютные паразиты - малярийный плазмодий, токсоплазма.
Поэтому в настоящее время кардинальные отличия вирусов от остальных микроорганизмов основываются на более существенных биологических свойствах, о которых мы как раз и говорили на этой лекции.
Основываясь на знании разобранных нами свойств вирусов можно сформулировать следующие 5 кардинальных отличий вирусов от остальных живых существ на Земле:
1. Отсутствие клеточной организации.
2. Наличие только одного типа нуклеиновой кислоты (ДНК или РНК).
3. Отсутствие самостоятельного обмена веществ. Обмен веществ у вирусов опосредован через метаболизм клеток и организмов.
4. Наличие уникального, дисъюнктивного способа размножения.
5. Способность паразитировать на генетическом уровне.
Таким образом, мы можем дать следующее определение вирусам.