Энергосбережение в регулируемом АЭП

 

Применение регулируемого ЭП позволяет обеспечить энергосбе­режение в целом ряде технологических процессов, иногда во много раз превосходящее экономию энергии в самом ЭП. Например, регу­лирование скорости ленты транспортера с помощью ЭП, подающего детали в закалочную печь, позволяет минимизировать количество теп­ловой энергии на закалку в зависимости от их сортамента, технологии закалки и других факторов. Весьма эффективно регулируемый по ско­рости ЭП может обеспечить энергосбережение в таких рабочих маши­нах, как насосы, вентиляторы и компрессоры. Поскольку эти рабочие машины являются очень распространенными в промышленности, на транспорте, в сельском и жилищно-коммунальном хозяйствах и по­требляют до 40% всей производимой электроэнергии, энергосбереже­ние в этом случае оказывается очень эффективным. Рассмотрим эффект энергосбережения на примереЭПцентробежного насоса. Ос­новной характеристикой на­соса является зависимость со­здаваемого им напора (давле­ния) Н от расхода водыQ(рис. 4). На рисунке представлены характери­стики H=f(Q) для двухскоро­стей приводного двигателя: номинальной (характеристика 1) и понижен­ной(характеристика 2).

 

 

 

Рисунок 4 – Характеристики насосного агрегата

 

Особенностью работы большинства насосных установок явля­ется изменение количества (расхода) подаваемой ими жидкости в течение времени. Например, потребление воды в жилых зданиях ме­няется в течении суток и имеет два максимума - утренний и вечер­ний. Допустим, что в исходном положении насос работал с номи­нальными расходом Qном и напором Нном в точке 1. При снижении расхода воды до значения Q2 при неизменной скорости ЭП напор в соответствии с характеристикой возрастет до значения Н2.

Но, тот же расход воды можно обеспечить при меньшем напоре Н1, если с помощью ЭП снизить скорость двигателя до уровня, характеризующегося характеристикой 2. В этом случае из сети будет потребляться меньшая мощность.

Примеры использования регулируемого ЭП насосов показыва­ют, что экономия электроэнергии может доходить до 50% и более в зависимости от вида и режимов работы насосных установок. Кро­ме того, при работе сетей с меньшими напорами значительно мень­ше утечки воды в сетях и арматуре (на 15...20% и более). В насосах с ЭП переменного тока при регулировании скорости двигателей обычно применяются статические преобразователи частоты.

Если электропривод не подвержен значительным регулиров­кам частоты вращения, частым пус­кам, реверсам и т.п., то повышенные затраты на тиристорное либо другое дорогостоящее оборудование могут оказаться неоправданными, а расхо­ды, связанные с потерями энергии — незначительными. И наоборот, при интенсивной эксплуатации электро­привода в переходных режимах при­менение электронных пускорегулиру­ющих устройств становится целесообразным. К тому же следует иметь в виду, что эти устройства практически не нуждаются в уходе и их технико-экономические показатели, включая надежность, достаточно высоки. Не­обходимо, чтобы решение по приме­нению дорогостоящих устройств элек­тропривода подтверждалось технико-экономическими расчетами.

Известно, что электрические поте­ри в питающих сетях и обмотках элек­трических машин пропорциональны квадрату тока (Рэл = I2R). По этой при­чине желательно электропитание дви­гателей от сети с более высоким на­пряжением, так как при заданной мощности применение более высоко­го напряжения сопровождается умень­шением силы тока и, следовательно, сокращением потерь. Поэтому для низ­ковольтных двигателей целесообразно применение напряжения 440 В (для двигателей постоянного тока) или 660 В (для двигателей переменного тока). Что же касается двигателей мощ­ностью 500 кВт и более, то они обыч­но рассчитаны на напряжение 6000 или 10000 В.

Решению проблемы энергосбереже­ния способствует применение синх­ронных двигателей, создающих в пи­тающей сети реактивные токи, опере­жающие по фазе напряжение. В итоге сеть разгружается от реактив­ной (индуктивной) составляющей то­ка, повышается коэффициент мощно­сти на данном участке сети, что ведет к уменьшению тока в этой сети и, как следствие, к энергосбережению. Эти же цели преследует включение в сеть синхронных компенсаторов.

Примером целесообразного приме­нения синхронных двигателей являет­ся электропривод компрессорных ус­тановок, снабжающих предприятие сжатым воздухом. Для этого электропривода характерен пуск при небольшой нагрузке на валу, продолжительный режим работы при стабильной нагруз­ке, отсутствие торможений и реверсов. Такой режим работы вполне соответ­ствует свойствам синхронных двигате­лей. Используя в синхронном двига­теле режим перевозбуждения, можно достичь значительного энергосбереже­ния в масштабе всего предприятия.

С аналогичной целью применяют силовые конденсаторные установки («косинусные» конденсаторы). Созда­вая в сети ток, опережающий по фазе напряжение, эти установки частично компенсируют индуктивные (отстаю-

щие по фазе) токи, что ведет к повы­шению коэффициента мощности сети, а следовательно, к энергосбережению. Наиболее эффективным является при­менение конденсаторных установок типа УКМ 58 с автоматическим под­держанием заданного значения коэф­фициента мощности и со ступенчатым изменением реактивной мощности в диапазоне от 20 до 603 квар при на­пряжении 400 В.

Необходимо помнить, что энерго­сбережение направлено на решение не только экономических, но и экологи­ческих проблем, связанных с производством электроэнергии.

 

Содержание

 

Лекция 1 . Классификация, структура автоматизированных

электроприводов (АЭП) …….………………………………4

Лекция 2. Регулирование координат ЭП………………………..8

Лекция 3. Пускозащитная аппаратура управления

разомкнутых электроприводов ……………………….…….19

Лекция 4. Средства управления разомкнутых электроприводов …….27

Лекция 5. Аварийные режимы и средства защиты в ЭП ………………36

Лекция 6. Специальные виды защит ……………………..…………….45

Лекция 7. Типовые узлы и схемы управления ЭП с

двигателями ПТ ……………………….…………….55