Образование электрической тяги.

При подаче U на обмотки тягового двигателя по его обмотках течет ток. Образуется вращающий момент. Якорь тягового двигателя вращается и через зубчатую передачу вращающий момент передается на колесную пару Мк. Колесо колесной пары прижато к рельсу с силой Р0. Вращающий момент Мк можно заменить парой сил F1 и F2. Сила F1 приложена к центру колеса О, а сила F2 – к ободу колеса в точке А касания его с рельсом. Рельс закреплен! Под действием сил F2 и Р0 возникнут равные им и противоположно направленные реакции со стороны рельса, выраженные силами Fк и R, которые являются внешними силами. Сила R направлена вертикально и не влияет характер движения. Сила реакции рельса Fк и является силой тяги. За счет сцепления колеса с рельсом возникает необходимый упор. При этом силы F2 и Fк уравновешиваются. Под действием силы F1 колеса поворачиваются относительно точки А, как мгновенного центра вращения. Так как мгновенный центр вращения при этом перемещается по поверхности головки рельса слева направо, то и центр колеса (точка О) поступательно движется в том же направлении.

Сумма сил Fк всех движущих колесных пар локомотива называется силой тяги локомотива.

Сила тяги Fк не должна превышать силу сцепления колеса с рельсом. тягового двигателя. FкFк сцеп. В противном случае колесо теряет упор и начнется проскальзывание - боксование. Сила сцепления определяется произведением силы Р0 на коэффициент сцепления колеса с рельсом – Fсцеп = P0 x ψ.

Для локомотива Fсцеп = mл x g x ψ, где mл - масса локомотива, g – 9,81 м/с2 – ускорение свободного падения, ψ – коэффициент сцепления.

Коэффициент сцепления зависит от материала рельса и колес, состояния их поверхностей, от скорости движения.

Расчетный коэффициент сцепления локомотива ψк определяют по эмпирическим формулам для различных типов локомотивов и отдельно в кривых малого радиуса R менее 500 м, например для электровозов переменного тока:

Природу силы сцепления часто объясняют наличием шероховатостей на поверхностях колеса и рельса. При таком рассуждении можно считать, что при наличии отшлифованных поверхностей сила сцепления меньше. Однако практика доказывает, что при чистых и хорошо обработанных поверхностях сила сцепления выше. Сцепление колес с рельсами объясняется молекулярным сцеплением. Для увеличения сцепления колес с рельсами используют сухой кварцевый песок, который разрушает поверхностные пленки и твердые частицы внедряются в контактируемые поверхности.

Под каждое колесо электровоза нужно подавать песок 400-700 г/мин летом и 900-1500 г/мин зимой.

Склонность колесных пар к боксованию возрастает с увеличением проката бандажей свыше 3÷4 мм и износа рельсов вследствие изменения формы и размеров площадки, по которой соприкасаются колесо и рельс.

Вращающий момент, действующий на колесо Мк = М х μ x ηn, где М – вращающий момент на валу якоря тягового двигателя, μ - передаточное отношение зубчатой передачи, которое определяется отношением числа зубьев зубчатого колеса к числу зубьев шестерни μ= Zk / Zш , ηn – К.П.Д. зубчатой передачи и моторно-осевых подшипников, который принимается равным 0,975.

Сила F1 действует на буксу и по III закону Ньютона букса на колесо действует с силой F3. Пара сил F3 и Fк определяют момент. Для условия равновесия колеса Fк х Dк / 2 = Мк, отсюда Fк = 2 Мк / Dк, или

Мощность электродвигателя Pдв = Uдв х Iн х ηn, а так же Pдв = Fк х V (H х км/ч), переводим км/ч в м/с - 1000/(60х60) = 1/3,6

Pдв = Fк х V / 3,6, отсюда ;

Сила тяги электровоза:

, где N – число двигателей электровоза.