Двухшаговый метод наименьших квадратов (ДМНК)
Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод (ДМНК).
Основная идея ДМНК состоит в следующем:
· на основе приведенной формы модели получить для сверхидентифицируемого уравнения расчетные значения эндогенных переменных, содержащихся в правой части этого уравнения;
· подставляя найденные расчетные значения эндогенных переменных вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения.
Метод получил название двухшагового МНК, ибо дважды используется МНК:
· на первом шаге при определении параметров приведенной формы модели и нахождении на их основе оценок расчетных значений эндогенных переменных ; ;
· на втором шаге применительно к структурному сверхидентифицируемому уравнению, когда вместо фактических значений эндогенных переменных рассматриваются их расчетные значения, найденные на предыдущем шаге.
Сверхидентифицируемая структурная модель может быть двух типов:
· все уравнения системы сверхидентифицируемы;
· система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.
Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним можно найти на основе косвенного МНК.Двухшаговыйметод, примененный к точно идентифицированным уравнениям дает такой же результат, что и косвенный МНК.
Трехшаговый метод наименьших квадратов (ТМНК)
Трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и случайные остатки каждого уравнения. Затем строится ковариационная матрица остатков и проводится ее оценка. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов. ТМНК является достаточно эффективным, но требует существенно больших вычислительных затрат. Более подробное описание можно найти в работе[1][1]
Метод инструментальных переменных (МИП) применяется дляоценивания уравнений, в которых регрессоры (факторы) коррелируют со свободными членами. Коррелированность между факторными переменными и случайными ошибками может быть вызвана разными причинами:
· пропущенными переменными, которые находятся в корреляционной связи с факторными переменными;
· ошибками измерений факторных переменных;
· включением лагированной зависимой переменной при наличии автокоррелированности ошибок. В этом случае лаговые переменные скорее всего будут коррелировать с ошибками;
· одновременные взаимосвязи между переменными (эндогенность переменных, включенных в правые части регрессионных уравнений).
Именно это явление оказывается характерным для систем одновременных уравнений;
Если между факторными переменными и случайными остатками имеется корреляционная зависимость ( , ), то нарушаются условия классической модели и оценки параметров, найденные по МНК будут смещенными и не состоятельными.