Графический способ исследования моментов инерции. Круги Мора
Можно показать, что формулы для моментов инерции
Іх = cоs 2α+ sin 2α,Іу =cоs 2α +sin 2α., Іху = sin2α представляют уравнение окружности впараметрической форме. Поэтому вычисление моментов инерции по полученным аналитическим формулам можно заменить графическим определением этих величин в системе координат (Іх, Іу), Іху, построив круг, называемый кругом инерции.
В графическом способе исследования моментов инерции рассматриваются прямая и обратная задачи.
Прямая задача:известны главные центральные моменты инерции , , требуется графическим способом найти моменты инерции Іх, Іу, Іху относительно осей х и у, повернутых от главных осей на угол α.
В координатной системе (Іх, Іу) , Іху (рис.2.10) построим круг на диаметре АВ, отложив в масштабе отрезки ОА= , ОВ = . В центре круга С от оси абсцисс отложим центральный угол 2α (α >0, если он откладывается против часовой стрелки), пересечение стороны этого угла с окружностью обозначим через Dх, а диаметрально ей расположенную точку через Dу. Проекции этих точек на ось абсцисс обозначим через Кх,, Ку.
Докажем, что отрезки ОКх= Іх, ОКу= Іу, КхDх= Іху .
Из рис.2.10 видно, что ОКх=ОС + СКх, ОКу=ОС – СКу, ОС=ОВ+ВС,
|
|
|
|
Так как 1+cos2α =2 cos2α, 1-cos2α =2sin2α., то
ОКх = ∙ cos2α + ∙sin2α = Іх,
ОКу = ∙ sin2α +∙cos2α = Іу,
DхКх = СDх ∙sin2α =∙sin2α = Іху
Обратная задача:известны моменты инерции относительно центральных осей
Іх, Іу, Іху, необходимо определить главные центральные моменты инерции и положение главных центральных осей.
Отложим в масштабе по координатным осям (Іх, Іу), Іху отрезки ОКх= Іх, ОКу= Іу,
КхDх = Іху, КуDу = - Іху (рис.2.11). На отрезке DХDУ как на диаметре построим круг и обозначим на оси абсцисс его крайние точки : крайнюю правую точкой А, крайнюю левую тоИз преды-дущей задачи следует: ОА=, ОВ=Найдем значения этих величин, выразив их через отрезки круга: ОА=ОС+СА,
ОВ=ОС-ВС, СА=ВС=СDХ=,
СКх = СКу= ,
тогда
СА=ВС=,
ОС = ОКу + СКу = Іу += .
Используя значения полученных отрезков, запишем выражения для главных центральных моментов инерции
ОА=I,
ОВ= I.
Из рис. 2.11 следует, что α0 = -α, тогда
tgα0 =.
2.7 Радиусы и эллипс инерции
Осевые моменты инерции сечения можно представить как произведение площади сечения на квадрат некоторой величины, называемой радиусом инерции: Іх== =А,где-радиус инерции относительно осих. Из этого выражения следует, что , . Главным центральным осям будут соответствовать главные радиусы инерции
, .
Выражение=1 представляет уравнение эллипса, полуосями которого являются главные радиусы инерции.
Эллипс, построенный на полуосях, равных главным радиусам инерции, называется эллипсом инерции.
Необходимо отметить, что при построении эллипса отрезки, равные , откладываются по оси у0, а отрезки, равные , - по оси х0. Поэтому эллипс инерции всегда вытянут вдоль сечения (рис.2.12), и он не может быть больше сечения, а так же заметно меньше его (рис.2.13).
Для определения момента инерции относительно произвольной оси Х необходимо провести касательную α -α к эллипсу инерции, параллельную этой оси. Перпендикуляр СК, опущенный из центра эллипса С на эту касательную будет равен радиусу инерции, т.е., іх=СК, Iх=(СК)2А
|
|
|
|
| |||||||||||||
|
3.7 Моменты инерции сложных сечений
При проверке прочности элементов конструкций приходится встречаться с поперечными сечениямидовольно сложной формы, для которых нельзя вычислить моменты инерции таким простым путем, каким пользовались для треугольника, прямоугольника или круга. В этом случае сложное сечение разбивают на простые фигуры, для которых известны площади, координаты центров тяжестей и моменты инерции относительно собственных центральных осей . По формулам (3.1) находят координаты центра тяжести cвсего сечения в произвольно выбранных осях x0,y0, параллельных центральным осям выделенных элементов. Через центр тяжести cпроводят центральные оси сечения u, v, относительно которых вычисляют осевые и центробежный моменты инерции по формулам (3.15). Моменты инерции относительно главных центральных осей определяются по формулам (3.20), а положение главных центральных осей – по формуле (3.18).
Пример.Для заданного сложного поперечного сечения, состоящего из двутавра №18 и уголка 100х100х12, вычислить значения главных центральных моментов инерции ,и положение главных центральных осей u , v.