Критерии СТЬЮДЕНТА
Чтобы оценить существенность параметров, необходимо рассчитать для них критерии Стьюдентаta, tb, tr. Для параметров а, b и коэффициента rxy критерий Стьюдента определяет соотношение между самим параметром и его ошибкой;
Для коэффициента корреляции формулу расчета критерия Стьюдента можно преобразовать и она будет иметь несколько иной вид:
Фактические значения критерия Стьюдента сравниваются с табличными при определенном уровне надежности α и числе степеней свободы df= (п—2). По результатам этого сравнения принимаются или отвергаются нулевые гипотезы о несущественности параметров или коэффициента корреляции. Если фактическое значение критерия Стьюдента больше табличного, тогда гипотеза о несущественности отвергается. Подтверждение существенности коэффициента регрессии равнозначно подтверждению существенности уравнения регрессии в целом.
Ошибки аппроксимации.
Практически всегда фактическое значение результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии. Чем меньше эти отличия, тем ближе будут теоретические значения подходить к эмпирическим следовательно, тем лучше подобрано уравнение регрессии Величина отклонений фактических значений от расчетных результативного признака по каждому наблюдению представляет собой ошибку аппроксимации.
Ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю:
Эти ошибки уже поддаются сравнению, но они оценивают каждое наблюдение в отдельности. Такую ошибку принято называть относительной ошибкой аппроксимации.
Чтобы оценить качество модели в целом, можно определить среднюю ошибку аппроксимации, представляющую собой среднюю арифметическую относительных ошибок аппроксимации по всем наблюдениям, включаемым в модель: