Сущность аргонодуговой сварки неплавящимся электродом и ее применение.

Дуговая сварка в защитном газе. Сущность способа. Защитные газы.

3. Механизирован­ная и автоматическая сварка в углекислом газе; сущ­ность, преимущества, область применения, применяемое оборудование, материалы и инструмент.

1. Для защиты металла при ручной и автоматической сварке от воздействия кислорода и азота воздуха, кро­ме шлакового покрытия, применяют газовую защиту вокруг дуги и расплавленного металла. В качестве защитных газов применяют инертные и активные газы (водород, окись углерода или их смесь с азотом). Наибольшее промышленное применение имеют аргонодуговая свар­ка и сварка в углекислом газе.

Защитный газ может заполнять камеру, где ведут процесс сварки, но чаще всего его подают в дугу через мундштук 1 (рис. 69) в виде потока 2,который окутывает электрод 3,дугу 4 и сварочную ванну 5, защищая их от проникновения кислорода и азота. Рис. 69 Дуговая сварка в защитной среде

Сварка в защитных средах может проводиться как плавя­щимся, так и неплавящимся электродом с применением присадоч­ного металла 6. В качестве неплавящихся электродов используют вольфрамовые, угольные или графитированные стержни. Расход вольфрамового электрода при токе до 300 А составляет примерно 0,5 г на 1 м шва. В качестве плавящегося электрода используется металлическая проволока того же состава, что и свариваемый ме­талл. Процесс ведется с помощью полуавтоматических или авто­матических устройств.

Источниками питания для дуги в защитных средах служат агрегаты постоянного тока или сварочные выпрямители. Кроме того, в комплект оборудования входит механизм подачи электрод­ной проволоки, горелка и устройство для обеспечения дуги защит­ным газом. В полуавтоматах проволока подается по специальным шлангам в горелку. Диаметр проволоки берут в интервале 1,2…2 мм. Зажигание дуги в аргоне затруднено, потому что атомы ар­гона не образуют отрицательных ионов, вследствие чего необходи­ма более высокая степень ионизации нейтральных частиц. Поэтому напряжение холостого хода источника питания повышают до 90…120 В.

Сварка в инертной среде используется для нержавеющих, жароупорных, алюминиевых и магниевых сплавов. При этом использо­вание плавящихся электродов экономично для толщин не менее 2 мм.Меньшие толщины сваривают неплавящимся вольфрамовым электродом.

2.При аргонодуговой сварке неплавящимся электро­дом (рис. 70) через специальную горелку, в которой установлен вольфрамовый электрод, пропускают нейт­ральный газ – аргон (или гелий). Возбуждение дуги происходит между электродом и свариваемым издели­ем. Для заполнения разделки кромок в зону вводят при­садочный пруток, химический состав которого близок к составу основного металла.

Рис. 70 Схема аргонодуговой сварки:

1 – изделие; 2 – присадочный пру­ток; 3 – вольфрамовый электрод; 4 – мундштук; 5 – защитная обо­лочка из инертного газа; 6 – элек­трическая дуга; 7 – расплавленный металл

Применяют электроды ди­аметром 2…6 мм. Аргон подается в горелку под давлением 0,3…0,5 ат.

Аргон – инертный газ, получаемый из воздуха, хранят и транспортируют его в специальных стальных баллонах под давлением 15 МН/м2 (150 aт).Для сварки меди и малоответственных деталей из легированных сталей применяют тех­нический аргон, содержащий до 17% примесей, а для сварки вы­соколегированных сталей, легких сплавов применяют чистый аргон (не более 0,3% примесей).

Аргонодуговую сварку осуществляют тремя способами: 1) ручной сваркой неплавящимся (вольфрамо­вым) электродом, 2) полуавтоматической и автоматической свар­кой неплавящимся электродом, 3) полуавтоматической и автомати­ческой сваркой плавящимся электродом.

Сварку неплавящимся электродом обычно осуществляют на переменном токе с применением осцилляторов или на постоянном токе обратной полярности. Такую схему включения применяют при сварке алюминиевых сплавов, когда за счет эффекта катодно­го распыления происходит разрушение поверхностных окисных пленок.

В сварочных горелках для аргонно-дуговой сварки одновремен­но с подачей электродной проволоки в дугу и подводом сварочного тока к электроду осуществляется подача струи аргона.

Аргонодуговая сварка применяется для сварки легированных сталей, алюминия и его сплавов, титана, магниевых спла­вов и дает хорошие ре­зультаты.

В ряде случаев сварка выполняется и плавящимся металлическим электродом, подаваемым через сопло горелки, обеспечивающей струйную защиту дуги и места сварки аргоном, гелием или их смесями.

Сварка в аргоне и гелии имеет преимущества перед свар­кой покрытыми электродами и под флюсом: обеспечивается на­дежная защита расплавленного металла от кислорода и азота воз­духа, что обусловливает высокие механические свойства и посто­янство состава наплавленного металла; обеспечивается высокая производительность и хорошее формирование шва за счет устой­чивости процесса и полной его механизации; можно сваривать ме­таллы разнородные и малой толщины.

Недостатком сварки в среде аргона является дороговизна са­мого аргона, так как технология его производства очень трудоемка, а дли сварочного процесса требуется газ высокой чистоты.

3. Сварка в углекислом газе – наиболее дешевый спо­соб по сравнению с другими видами сварки в защитных средах. В качестве заменителя аргона используют углекислый газ, несмотря на его окислительные способности. Углекис­лый газ дешев, негорюч, нетоксичен. Дуга горит между изделием и электродной проволокой, подаваемой через специальную газоэлектри­ческую горелку, и которую поступает из баллона угле­кислый газ, предварительно пропущенный через осу­шитель. Углекислый газ защищает дугу и расплавлен­ный металл от воздуха. Сварку производят постоянным током обратной полярности для устранения пористости наплавленного металла. При этом достигается высокая производитель-ность (до 18 кг/ч). Расход углекислого газа составляет 8…20 л/мин.

Свар­ка в среде углекислого газа требует элек­тродной проволоки специального состава с повышенным содержанием марганца и кремния и ведется на постоянном токе при больших плотностях сварочного тока (ди­аметр электродной проволоки 0,5…3 мм, плотность тока 80…100 А/мм2), что тре­бует источника питания

с жесткой харак­теристикой. Рис.71 Схема сварки в среде углекислого газа

Наша промышленность выпу­скает разнообразные автоматы и полуавтоматы (типа ПДГ) для вы­полнения этого процесса. Технология сварки в среде углекислого га­за проста: режим подбирается в зависимости от свариваемой толщи­ны (1…30 мм), вида шва (стыковые, угловые, электрозаклепками и др.), положения шва в пространстве (нижнее, горизонтальное, вертикальное) и свариваемого материала (углеродистые, низколе­гированные, теплоустойчивые, высоколегированные хромоникелевые стали и др. сплавы).

Сварка в угле­кислом газе успешно применяется для изделий из малоуглеродистой стали, для заварки дефектов стальных отливок, для наплавки изношенных деталей и др.

Пластичность наплавленного металла при сварке в углекислом газе может быть несколько ниже, чем при сварке под флюсом.

Схема сварки представлена на рис.71. Установка состоит из источника питания сварочного тока 1, газоэлектрической горел­ки 2, механизма подачи электродной проволоки 3, указателя рас­хода углекислого газа (ротаметра) 4, редуктора 5 (обычно после ре­дуктора устанавливают осушитель влаги) и баллона 6 с углекисло­той. Газоэлектрические горелки, предназначенные для малых токов (до 300 А), не имеют водяного охлаждения, а предназначенные для больших токов (более 300 А), оборудованы водяным охлаждением во избежанте сильного перегрева при сварке.

Особенностью сварки в среде углекислого газа является возможность в широких масштабах заменить ручную электродуговую сварку полуавтоматическойи автоматической. При этом можно использовать электродную проволоку диаметром 0,6…2,0 мм, что обеспечивает высокую устойчивость процесса сварки, небольшое разбрызгивание и высокое качество сварных соединений. Однако, следует учитывать, что при сварке некоторые элементы металла (С, Si, Мn, Тi, Мg, АI, V и др.) выгорают. Для компенсации окис­лительного действия углекислого газа повышают содержание рас­кисляющих элементов (Мn, Ni) в электродной проволоке.

Для получения плотного, беспористого металла шва и умень­шения разбрызгивания металла при сварке необходимо поддержать наиболее короткую дугу (1,5…4 мм).

Газоэлектрическая сварка в атмосфере углекислого газа наибо­лее эффективна для соединения тонких деталей. При сварке дета­лей малой толщины (до 2 мм) напряжение на дуге должно быть при­мерно 22 В, ток 60…150 А, расстояние от сопла горелки до металла 7…14 мм. Для сварки деталей средней толщины принимают ток 250…500 А, напряжение на дуге 26…34 В, расстояние от сопла го­релки до металла 15…25 мм.

Сварку, как правило, осуществляют на постоянном токе обратной полярности. Расход углекислого газа, достаточный для защиты зоны сварки от воздуха, составляет 15…20 дм3/мин при рабочем давлении 50 кН/м2 (0,5 атм).

На полуавтоматических и автоматических установках скорость сварки достигает 60 м/ч.

Недостатком сварки в атмосфере углекислого газа является то, что пластичность наплавленного металла может быть несколько ниже, чем при сварке под флюсом.

Дуговая сварка в атмосфере углекислого газа получила распространение в с/х машиностроении и ремонтном деле для соединения низкоуглеродистых и легированных сталей, сплавов алюминия, а также чугуна.

 

Тема 3.2.5 Дуговая сварка под флюсом, её сущность и область применения

Вопросы: