Оптимальное соотношение размеров цилиндрической активной зоны.
Из всего сказанного в принципе должно быть ясно, как рассчитывать критические размеры активной зоны цилиндрического гомогенного реактора по заданному составу материалов его активной зоны:
а) по составу материалов активной зоны рассчитать величины их эффективных микросечений и средних макросечений для всей среды активной зоны;
б) рассчитать h, e, j, q, tт и L2, то есть получить k¥, tт и L2;
в) методом последовательных приближений решить уравнение критичности реактора
k¥ exp(-B2tт)/(1 + B2L2) = 1
относительно величины В2, являющейся в критическом реакторе и материальным, и геометрическим параметром;
г) подставляя найденную величину В2 в её выражение:
(p/H')2 + (2.405/R')2 = B2, (*)
можно было бы искать экстраполированные критические размеры активной зоны реактора (Н' и R'), но одно уравнение с двумя неизвестными имеет бесчисленное множество пар решений. Иными словами, одному и тому же значению В2 удовлетворяют и блинообразные активные зоны (с малым отношением Н'/R'), и, наоборот, колоннообразные активные зоны (с большим отношением Н'/R').
Следовательно, для получения определённого решения уравнения (6.4.11) необходимо задаться величиной соотношения размеров активной зоны (Н'/R'). Из каких соображений?
- Из соображений экономии нейтронов: из стремления при данной величине объёма активной зоны сделать минимальной утечку тепловых нейтронов. При одинаковой плотности тока утечки тепловых нейтронов по всей поверхности активной зоны решение задачи на минимум утечки сводится к решению задачи на минимум поверхности цилиндрической активной зоны при заданном ее объёме. Это имеет место при соотношении (Н'/R') = 2, то есть когда высота цилиндра равна его диаметру.
Но на цилиндрической части поверхности активной зоны градиент плотности потока тепловых нейтронов получается немного выше, чем на плоских поверхностях верхнего и нижнего торцов активной зоны, а, значит, величины плотности тока утечки тепловых нейтронов на цилиндрической поверхности будут выше, чем на плоских торцах.
Поэтому для нахождения минимально-возможной общей утечки тепловых нейтронов из активной зоны необходимо решать задачу на экстремум для величины общего тока утечки тепловых нейтронов через всю поверхность активной зоны (S):
Jобщ = ò J(S) dS
(S)
Решение этой задачи дает оптимальное соотношение размеров цилиндрической активной зоны
(H'/R')opt = 1.948
по соображениям экономии тепловых нейтронов в активной зоне.
Цилиндрические активные зоны с (Н'/R')<1.948 принято называть уплощёнными (т.е. более плоскими по сравнению с активными зонами с оптимальным соотношением размеров), а зоны с (H'/R')>1.948 - удлинёнными.
Например, активная зона РБМК-1000 (Наз = 7м, Dаз = 11.8 м) характеризуется отношением Н'/R' » 1.19, т. е. является сильно уплощённой, а активная зона ВВЭР-1000 (Наз = 3.55 м, Rаз =1.58 м, Н'/R' » 2.25) - является явно сильно удлинённой. В той и другой активных зонах экономия тепловых нейтронов оказалась принесённой в жертву иным соображениям.
В ВВЭР-1000 уменьшение отношения Н'/R' привело бы к увеличению диаметра активной зоны за счёт сокращения её высоты, а вместе с этим - и к увеличению диаметра корпуса реактора, а, значит, - к увеличению толщины стенки корпуса (корпус - сосуд, работающий под большим давлением), материалоёмкости реактора и к увеличению его стоимости. Именно поэтому (главным образом) активная зона ВВЭР-1000 выполнена удлинённой.
У РБМК-1000 (канального реактора) таких проблем нет: активная зона находится под незначительным давлением азотно-гелиевой смеси, охлаждающей графитовую кладку; высокое давление имеет место только внутри труб технологических каналов; уменьшение высоты активной зоны (или высоты технологических каналов) за счёт увеличения диаметра активной зоны оказывается даже благотворным делом: сточки зрения укорочения технологических каналов и увеличения численности параллельно работающих каналов, при котором снижается гидравлическое сопротивление активной зоны, а, значит, - и энергетические затраты на циркуляцию теплоносителя в контуре МПЦ.
Краткие выводы
1) Главное влияние процесса диффузии на размножающие свойства активной зоны прослеживается через величину вероятности избежания утечки тепловых нейтронов pт, которая определяется величиной геометрического параметра активной зоны В2 и характеристикой диффузионных свойств среды активной зоны - длиной диффузии L. Величина pт определяется выражением:
pт = (1 + B2L2) -1.
2) получены два фундаментальных уравнения критического реактора - уравнение критичности:
he j q exp(-B2tт) (1 + В2L2)-1 = 1,
представляющее собой развернутое условие критичности реактора в зависимости от его нейтронно-физических характеристик и геометрических свойств активной зоны, и волновое уравнение:
Ñ2Ф(r) + B2Ф(r) = 0 ,
решение которого для конкретной активной зоны дает функцию Ф(r) распределения плотности потока тепловых нейтронов в объёме реактора.
3) В цилиндрическом гомогенном реакторе без отражателя распределение плотности потока тепловых нейтронов по высоте и радиусу реактора подчинено косинусоидально-бесселевому закону:
Ф(z,r) = Фо cos(pz / H') Io(2.405r /R'),
где максимальное значение плотности потока тепловых нейтронов Фо имеет место в геометрическом центре цилиндрической активной зоны.
4) Величина геометрического параметра Вг2 для цилиндрического реактора без отражателя определяется выражением:
Bг2 = [p/(Hаз+ 2d)]2 + [2.405/(Rаз+d)]2,
в котором величина d = 0.7104/Str - длина линейной экстраполяции.
5) В подкритическом реакторе Вг2 > Bм2, в критическом Вг2 = Вм2, а в надкритическом - Вг2 < Bм2.