Выражение для геометрического параметра цилиндрической активной зоны.
Х
- 0.5
Результат решения волнового уравнения для цилиндрической гомогенной активной зоны.
Если записать волновое уравнение в цилиндрической системе координат, начало которой совпадает с центром активной зоны, и решить его при обозначенных выше граничных условиях, то интеграл этого уравнения будет иметь вид:
Выражение означает, что:
- распределение величины плотности потока тепловых нейтронов по высоте цилиндрической гомогенной активной зоны (в точках равноудаленных от оси симметрии на расстояние r)подчиняется закону косинуса:
Ф(z) r=idem = Фоr cos(pz/H'),
где Фоr = Ф(z=0, r) - значение плотности потока тепловых нейтронов на цилиндрической поверхности радиуса r на середине высоты активной зоны (рис.6.8):
d
d d
Рис.6.8. Эпюры распределения плотности потока тепловых нейтронов по высоте цилиндрической
гомогенной активной зоны по оси симметрии и на разных отстояниях от оси.
z
d
d d
Рис.6.9. Эпюры распределения плотности потока тепловых нейтронов по радиусу
цилиндрической гомогенной активной зоны на разных уровнях по её высоте.
- распределение плотности потока тепловых нейтронов по радиусу активной зоны (в плоских круговых поверхностях на любой фиксированной высоте z над (или под) центром активной зоны) подчиняется закону функции Бесселя первого рода нулевого порядка:
Ф(r) z=idem= Фоz Io(2.405r/R'),
где Фоz = Ф(z,r=0) - значение плотности потока тепловых нейтронов на оси симметрии активной зоны на высоте z (рис.6.9).
Функция Бесселя первого рода нулевого порядка Io(x) для действительного аргумента x появляется при решении волнового уравнения в цилиндрической системе координат. Начальный участок графика этой функции (при изменении x в пределах от 0 до 2.405) напоминает график функции косинуса в пределах от 0 до p/2: при x = 0 Io = 1, а при x = 2.405 Io = 0 (рис.6.10). Более того, значения этих функций при значениях аргумента x в указанных интервалах их с точностью до + 2% совпадают.
I0(x) 1.0
0.5
Рис.6.10. График функции Бесселя первого рода нулевого порядка Io(x) для действительного аргумента.
В связи с тем, что график Io(x) пересекает ось абсцисс при xo = 2.405, это значение аргумента называют первым корнем (или первым нулём) функции Бесселя первого рода нулевого порядка.
Характер косинусоидально-бесселевского распределения плотности потока тепловых нейтронов в цилиндрической гомогенной активной зоне действителен (совпадает с реальным) для любых точек активной зоны, исключая точки, лежащие в пределах относительно тонкого приграничного слоя толщиной ~ 2ltr среды активной зоны, где действительный характер распределения Ф(z,r) несколько отклоняется от аналитического в сторону увеличения.
Учитывая, что транспортные макросечения сред активных зон ВВЭР не превышают нескольких см -1, соответствующие им величины длины линейной экстраполяции d оказываются не выше 1 см. Поэтому распределение Ф(z,r) в цилиндрических гомогенных активных зонах с размерами более 1 м фактически определяется не столько величиной d, сколько действительными размерами активной зоны.
Этот вывод справедлив и для гетерогенных тепловых реакторов.
Это выражение получается путём решения волнового уравнения. После преобразований получается:
Bг2 = (p/H')2 + (2.405/R')2
Как видим, геометрический параметр имеет размерность см-2, а его величина обратно пропорциональна квадрату линейных размеров активной зоны реактора.
О величине геометрического параметра говорят такие цифры:
- для реактора космической спутниковой электростанции (R'» 6 см, H'~ 11 см) величина Вг2 » 0.2422 см-2;
- для реактора морского атомохода (R' » 50 см, H' » 100 см) Вг2 » 3.3 10-3 см-2;
- для реактора ВВЭР-1000 (R' = 158 см, H' = 355 см) Вг2 = 3.1 10-4 см-2;
- для реактора РБМК-1000 (R' = 590 см, H' = 700 cм) Вг2 = 3.7 10-5 см-2.
Падающий характер изменения величины Вг2 с ростом линейных размеров активной зоны позволяет качественно разрешить вопрос о соотношении величин геометрического и материального параметров в некритических реакторах (в критических реакторах, как уже отмечалось, Вг2 = Вм2).
Величина материального параметра для любого реактора определяется только составом материалов, входящих в его активную зону. Следовательно, для гетерогенного реактора, активная зона которого состоит из одинаковых ячеек, величина материального параметра для всей активной зоны уже определена составом материалов одиночной ячейки: ведь соотношение материалов в одиночной ячейке и во всей активной зоне, составляемой из определённого числа таких ячеек, одинаково. Значит, величина материального параметра от числа размещаемых в его активной зоне ячеек не зависит и в процессе загрузки топливных ячеек в активную зону не меняется.
Теперь представим себе процесс загрузки активной зоны и доведения её до критического состояния: в загруженный замедлителем реактор вначале вставляется центральная ТВС, затем вокруг неё размещается первый слой из 6 таких же ТВС, затем последовательно ставятся на свои места 12 ТВС второго слоя, затем - 18 ТВС третьего слоя и т.д., - до тех пор, пока не будет набрано критическое количество ТВС, при котором в активной зоне начинается самоподдерживающаяся цепная реакция деления.
Ясно, что в процессе доведения активной зоны до критического состояния растёт радиус набора активной зоны, а значит, величина геометрического параметра:
Bг2 = (p/H')2 + (2.405/R')2
в процессе набора критической массы будет уменьшаться. И когда активная зона достигнет критичности, величина геометрического параметра снизится до величины материального параметра.
Таким образом, в подкритическом реакторе величина геометрического параметрабольше величины материального параметра, а в надкритическом (который получился бы, если бы в активную зону добавили еще одну ТВС сверх критического их количества) - наоборот - величина материального параметра стала быбольше величины геометрического параметра.