Анализ общего риска: активы, рассматриваемые изолированно
Понятия распределения вероятностей и ожидаемой величины могут использоваться как основа для измерения риска. Известно, что риск присутствует в том случае, если исследуемые распределения имеют более одного возможного исхода, однако каким образом можно измерить риск и оценить его количественно? Чтобы ответить на этот вопрос, рассмотрим сначала методику исчисления общего риска.
Выше мы предположили, что возможны 5 состояний экономики (см. табл. 3.1). На самом же деле состояние экономики может варьироваться от самой глубокой депрессии до наивысшего подъема с бесчисленным количеством промежуточных положений. Обычно среднему (нормальному) состоянию соответствует самая большая вероятность, далее значения вероятностей равномерно уменьшаются при удалении от нормы как в одну (подъем), так и в другую (спад) сторону, стремясь к нулю в крайних положениях (полная депрессия и наибольший подъем). Если при этом величина доходности, соответствующая нормальному положению, является одновременно и средним арифметическим двух крайних значений, то мы получаем распределение, которое в теории вероятностей носит название «нормального». Его графическое изображение дано на рис. 3.2.
Нормальное распределение достаточно полно отражает реальную ситуацию и дает возможность, используя ограниченную информацию, получать числовые характеристики, необходимые для оценки степени риска того или иного проекта. Далее будем всегда предполагать, что мы находимся в условиях нормального распределения вероятностей.
Замечание.В действительности в чистом виде нормальное распределение в экономических явлениях встречается редко, однако, если однородность совокупности соблюдена, часто фактические распределения близки к нормальному.
Вопрос 2.Реальные распределения вероятностей могут существенно отличаться от нормального. Насколько сильно будут искажены наши выводы, если в наших рассуждениях мы будем исходить только из нормального закона распределения вероятностей?
Ответ: а) затрудняюсь ответить; б) существенно искажены; в) искажения будут несущественными.
Правильный ответ в).
При любом варианте ответа см. справку 2.
Справка 2. Даже если распределение не является близким к нормальному, на основании теоремы Чебышева можно утверждать, что для любого распределения не менее 89% всех исходов лежит в пределах трех средних квадратических отклонений от ожидаемого значения.
ERR
Рис. 3.2. Нормальное распределение вероятностей
На рисунке 3.1 приведены графики распределения вероятностей для проектов 1 и 2. Условиям нормального распределения удовлетворяет проект 2.
Для большей прозрачности дальнейших рассуждений, полезно предварительно решить самостоятельно следующую задачу
Задача 1. Рассмотрим два финансовых проекта А и В, для которых возможные нормы доходности (IRR ) находятся в зависимости от будущего состояния экономики. Данная зависимость отражена в таблице 3.2
Таблица 3.2.
Данные для расчета ожидаемой нормы доходности вариантов вложения капитала в проекты А и В
Состояние экономики | Вероятность данного состояния | Проект А, IRR | Проект В, IRR |
Подъем Норма Спад | P1 = 0,25 Р2 = 0,5 Р3 = 0,25 | 90% 20% - 50% | 25% 20% 15% |
Рассчитайте для каждого из проектов ожидаемую норму доходности ERR.Сравните результаты своих вычислений с ответом.
Ответ: Для проекта А по формуле (3.1) получаем:
ERRА = 0,25 ´ 90% + 0,5 ´ 20% + 0,25 ´ (-50%) = 20%.
Для проекта В:
ERRВ = 0,25 ´ 25% + 0,5 ´ 20% + 0,25 ´ 15% = 20%
Таким образом, для двух рассматриваемых проектов ожидаемые нормы доходности совпадают, несмотря на то, что диапазон возможных значений IRR сильно различается: у проекта А от -50% до 90%, у проекта В от 15% до 25%. На рисунке 3.3 приведены графики распределения вероятностей для проектов А и В, (они удовлетворяют условиям нормального распределения).
Рис. 3.3. Распределение вероятностей для проектов А и В
Предполагается, что для проекта А в наихудшем случае убыток не составит более 50%, а в наилучшем случае доход не превысит 90%. Для проекта В 15% и 25% соответственно. Очевидно, что тогда значение ERR останется прежним (20%) для обоих проектов, совпадая со значением среднего состояния. Соответствующая же среднему значению вероятность понизится, причем не одинаково в наших двух случаях.
|
|
|
|
Рис. 3.4. Распределение вероятностей для проектов А и В
Очевидно, чем более «сжат» график, тем выше вероятность, соответствующая среднему ожидаемому доходу (ERR), и вероятность того, что величина реальной доходности окажется достаточно близкой к ERR. Тем ниже будет и риск, связанный с соответствующим проектом. Поэтому меру «сжатости» графика можно принять за достаточно корректную меру риска.
Меру «сжатости» определяет величина, которая в теории вероятности носит название«среднеквадратичного отклонения» - s - и рассчитывается по следующей формуле
(3.2)
Чем меньше величина s, тем больше «сжато» соответствующее распределение вероятностей, и тем менее рискован проект. При этом для нормального распределения вероятность «попадания» в пределы ERR ± s составляет 68,26%.
Рассчитаем значение s для рассматриваемых проектов А и В.
Проект А:
%
Проект В:
%
Как видим, для второго проекта с вероятностью 68,26% можно ожидать величину доходности IRR = 20% ± 3,5%, т.е. от 16,5% до 23,5%. Риск здесь минимальный. Проект А гораздо более рискованный. С вероятностью 68,26% можно получить доходность от -29,5% до 69,5%. Считается, что среднерискованной операции соответствует значение s около 30%.
В рассмотренном примере распределение вероятностей предполагалось известным заранее. Во многих ситуациях бывают доступны лишь данные о том, какой доход приносила некая финансовая или хозяйственная операция в предыдущие годы.
С позиции развиваемых представлений проанализируем рассмотренный в самом начале темы пример 1.
Рассчитаем, например, дисперсию доходности проекта 2 по данным табл. 3.1. Нам известно, что ожидаемая доходность проекта, равна 12.0%. Следовательно, дисперсия равна
= (-2,0 – 12,0)20,05 + (9,0 – 12,0)20,20 + (12,0-12,0)20,50 +
+(15,0-12,0)20,20 + (26,0-12,0)20,05 = 23,20,
а среднее квадратическое отклонение доходности проекта 2 – s =4,82%
Используя этот показатель в качестве меры разброса, можно сделать ряд полезных выводов о распределении исходов. В частности, если распределение является непрерывным и близким к нормальному, можно утверждать, что 68.3% всех исходов лежит в пределах одного среднего квадратического отклонения от ожидаемого значения, 95.4% — в пределах двух средних квадратических отклонений и практически все исходы (99.7%) — в пределах трех средних квадратических отклонений.
В табл. 3.3 приводятся ожидаемые значения доходности, дисперсия и среднее квадратическое отклонение по всем четырем альтернативным вариантам инвестирования примера 1, а также коэффициент вариации, который мы рассмотрим в следующем разделе. Мы видим, что ГКО-ОФЗ обладают наименьшими значениями показателей дисперсии и среднего квадратического отклонения, а проекту 2 соответствуют наибольшие их значения.
По данным табл. 3.3 можно, казалось бы, прийти к заключению, что казначейские векселя — наименее рисковый вариант инвестирования, а проект 2 — наиболее рисковый. Однако это не всегда верно; перед тем как сделать окончательный вывод, необходимо принять во внимание ряд других факторов, таких как численные значения ожидаемой доходности, асимметрия распределения, достоверность наших оценок распределения вероятностей и взаимосвязь каждого актива с другими активами, включенными в портфель инвестиций.