Условия равновесия фаз. Фазовые диаграммы. Агрегатное состояние вещества

Таблица 2.Названия дисперсных систем

Литература

Фазовый переход 2-го рода. Теория Эренфеста.

Термодинамическая устойчивость однофазного состояния вещества.

Уравнение Клайперона-Клаузиуса.

Условия равновесия фаз. Фазовые диаграммы.

Фазы. Гомогенные и гетерогенные системы.

Содержание

3.1. Фазы. Гомогенные и гетерогенные системы

 

При описании многих физических и химических систем используется понятие фаза.

Фаза – часть системы, однородная по составу и строению и отделенная от других частей системы (других фаз) границей раздела (межфазной границей).

Фазой системы может быть газ или смесь газов, жидкость (или жидкий раствор), твердое вещество (или твердый раствор). В любом случае, чтобы представлять собой отдельную фазу, такая составная часть системы должна быть однородной. Каждое из твердых веществ и каждая из несмешивающихся жидкостей представляют собой отдельную фазу.

Система, образованная водой и таящим льдом, состоит из двух фаз, так как, хоть по составу вода и лед одинаковы, у них разное строение, кроме того, между ними есть граница раздела. Воздух, соляная кислота, подкисленный серной кислотой водный раствор перманганата калия – системы, состоящие из одной фазы; здесь нет границ раздела, и в любой части такой системы состав и строение одинаковы.

В приведенном определении понятия " фаза" есть некоторые особенности, не дающие считать это определение исчерпывающим. Это, прежде всего, требование одинаковости состава и строения фазы. Оно относится только к фазам равновесных систем. Если в системе происходит химическая реакция, или просто растворение твердого вещества в жидкости, то фаза может быть и не однородна. Кроме того, сравниваемые объемы однородной фазы не должны быть соизмеримы с размером частиц (молекул, ионов), из которых состоит данная фаза – в противном случае, любая фаза окажется неоднородной. Другие проблемы, связанные с понятием " фаза" , рассматриваются в ВУЗах при изучении курса физико-химического анализа.

По числу фаз системы делят на гомогенные и гетерогенные.

Гомогенная система – система, состоящая из одной фазы. Гетерогенная система – система, состоящая из двух или большего числа фаз.

Фаза может быть сплошной или дисперсной (раздробленной на множество отдельных частиц). Сплошной фазой принято считать фазу, из любой точки которой можно попасть в любую другую точку, не пересекая межфазную границу.
Гомогенная система может быть образована лишь сплошной фазой.
Гетерогенная система может быть образована, как сплошными, так и дисперсными фазами.

Вода с помещенной в нее цинковой пластиной представляет собой гетерогенную систему, состоящую из двух сплошных фаз; если же в ту же воду насыпать цинковую пыль, или просто поместить отдельные гранулы цинка, то в такой системе одна из фаз будет дисперсной.

Сплошные фазы гетерогенных систем (а иногда и гомогенных) часто называют срe дами, например: " жидкая среда" , " твердая среда" , " водная среда" и т. п.

Гетерогенные системы, содержащие дисперсные фазы называют дисперсными системами. При этом сплошная фаза дисперсной системы называется дисперсионной средой.

Названия некоторых дисперсные систем с различными агрегатными состояниями дисперсионной среды и дисперсной фазы приведены в таблице 2.

Агрегатное состояние Агрегатное состояние дисперсной фазы
дисперсионной среды Газ Жидкость Твердое
Газ - Туманы Дымы, пыли, порошки
Жидкость Пены Эмульсии Суспензии, пасты
Твердое Твердые пены < нет названия > < нет названия >

Туманы и дымы носят общее название – аэрозоли. Именно они (в данном случае туманы) образуются при выпускании в воздух содержимого аэрозольных баллончиков. Дымы образуются не только при горении топлива, но и в результате многих других химических реакций, например, при взаимодействии хлороводорода с аммиаком.

К эмульсиям относится обычное молоко и множество технических эмульсий, например, применяемых для смазки и охлаждения режущего инструмента (эмульсии машинного масла в воде).

Примером грубодисперсной суспензии служит строительный " раствор" (суспензия песка и цемента в воде), а мелкодисперсной – масляная краска (суспензия пигмента в олифе). При затвердевании строительного раствора и " высыхании" масляной краски они превращаются в дисперсные системы с твердой дисперсионной средой. К этой же группе дисперсных систем относятся некоторые сплавы и многие горные породы.

Примеры жидких пен – мыльная, пивная, квасная и другие пены. Твердыми пенами являются пенопласт, пенополиэтилен, пенополиуретан, некоторые строительные материалы-утеплители. В отличие от них, обычная банная губка является дисперсной системой с двумя взаимопроникающими дисперсионными средами. В виде дисперсных систем с жидкой дисперсной фазой и твердой дисперсионной средой выпускаются некоторые лекарственные средства.

Пользуясь терминологией, приведенной в этом параграфе, следует помнить о том, что она не всегда правильно используется, особенно в технике. Так строительный " раствор" – отнюдь не раствор, а грубодисперсная суспензия. Фотографическая " эмульсия" – отнюдь не эмульсия, а дисперсная система с твердой дисперсной фазой (в черно-белой фотографии – бромидом серебра) и твердой дисперсионной средой, основным компонентом которой является животный белок коллаген. Водоэмульсионная краска (правильное название – водно-дисперсионная) не является эмульсией, а представляет собой дисперсию в воде твердых частичек пигмента и связующего.

Истинные растворы – гомогенные системы. Частицы, из которых они состоят, перемешаны на атомно-молекулярном уровне. Кроме таких растворов существуют внешне однородные системы, содержащие очень мелкие частицы другой фазы, тем не менее не являющиеся отдельными молекулами или ионами. Такие гетерогенные системы носят название коллоидных растворов (более новое название – лиозоли).

Частицы в коллоидных растворах невозможно отделить фильтрованием. Если они и отстаиваются, то очень медленно (иногда для этого требуется несколько лет). Обычные центрифуги также, как правило, не позволяют разделить коллоидный раствор. Иногда это удается с использованием так называемых " ультрацентрифуг" – центрифуг с очень большой скоростью вращения. Такая устойчивость коллоидных растворов связана не только с незначительными размерами твердых частиц, но и с довольно сложными электрофизическими явлениями на их поверхности, приводящими к взаимному отталкиванию коллоидных частиц.

Таким образом, одно и то же однородное вещество в зависимости от внешних условий может находиться в различных состояниях, т.е. иметь разные макроскопические свойства (например: плотность, вязкость, проводимость и т.д.), и наоборот, при заданных внешних условиях в тепловом равновесии вещество может существовать не как однородное тело, а распадаться на две или более соприкасающиеся однородные части, находящиеся в различных макроскопических состояниях. Это доказывают и эксперименты. Такие состояния называются фазовыми состояниями вещества. С точки зрения термодинамики фазой называется всякая однородная система, макроскопические свойства которой во всех точках одинаковы. Примерами таких состояний могут быть агрегатные состояния вещества – газообразное, жидкое, твердое, однородные состояния, отличающиеся химическим составом, различные аморфные и кристаллические модификации твердого тела. Понятие фазового состояния намного шире, чем понятие агрегатного состояния вещества. Можно сказать, что фазовое состояние - это понятие, основанное на различии в характере структурной организации вещества на молекулярном уровне. Например, полиморфные кристаллические модификации определенного вещества являются различными фазовыми состояниями, которые отличаются характером взаимного расположения атомов и молекул. Строго говоря, понятие агрегатного состояния не является точно определенным. Можно сказать, что агрегатное – газовое, жидкое и твердое состояния вещества в первую очередь различаются характером теплового движения атомов и молекул.

Условия равновесного существования многофазной системы (без учета особенностей, связанных со свойствами поверхности раздела фаз) сводятся к постоянству интенсивных параметров по всей рассматриваемой системе. Эти условия легко выводятся из принципа максимума энтропии для изолированной равновесной системы. Например, из требования максимальности энтропии двухфазной системы S = S1 + S2 = max (то есть вариация d S = 0), при неизменном состоянии всех частей системы, вытекает условие равенства нулю производной

,

где N1 и N2 числа частиц в первой и второй фазах соответственно. При условии постоянства полного числа частиц N1 + N 2 = N = const , т.е.

,

получаем:

Из основного термодинамического уравнения

(E- внутренняя энергия, m - химический потенциал)

представленного в виде

следует, что при постоянных E и V

.

Таким образом, условие равновесия фаз сводится к уравнению

и так как в равновесии T1 = T2 , окончательно получаем

(3.1)

Следовательно, две фазы могут находиться в равновесии только при таких значениях температуры и давления, которые удовлетворяют уравнению (3.1). При изменении давления меняется температура сосуществования фаз. Эту зависимость P = P(T) можно изобразить графически на диаграмме фазовых состояний.

На рис. 3.1 показан пример такой диаграммы, изображенной в координатах P,T . Кривая 1, определяемая равенством химических потенциалов жидкой и газообразной фаз, разделяет на фазовой диаграмме области существования жидкой и газообразной фаз. Аналогично кривые 2 и 3 соответствуют равновесию жидкость-твердая фаза и газ-твердая фаза. Общая точка всех трех линий равновесия называется тройной точкой. В этой точке одновременно могут существовать все три фазы. Так как три фазы вещества могут одновременно находиться в равновесии только при определенном значении температуры, то тройные точки являются удобным стандартом для температурной шкалы. Для их воспроизведения не нужно заботиться о поддержании определенного давления, как это требуется, например, при выборе в качестве стандартной точки температуры плавления льда. В настоящее время в качестве стандарта для определения абсолютной температурной шкалы выбрана тройная точка воды, равная 273,16 К.

рис.3.1.

Фазовую диаграмму можно изобразить и в других координатах - T,V или P,V, где V - объем занимаемый определенным количеством вещества. На таких диаграммах состояния, в которых сосуществуют две фазы, в отличие от P,T -диаграмм, заполняют целую область плоскости. Это связано с тем, что двухфазные равновесные системы всегда имеют одинаковые температуры и давления, в то время как удельные объемы этих фаз различаются. На рис.3.2 показан пример T,V -диаграммы газ-жидкость. Заштрихованная область соответствует двухфазным состояниям, когда одновременно сосуществуют жидкая и газообразная фазы.

рис.3.2.

Например, точка С на рис.3.2 является состоянием, в котором объемы газообразной и жидкой фаз Vq + V1 = V соотносятся в соответствии с так называемым правилом рычага

.

Аналогичным образом выглядит фазовая диаграмма в координатах P,V